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Part I: Kinetic models

Part I: Kinetic Models

Goal: to introduce a class of models that are important in physics.

Disclamer: this is not my work, but from classical literature. The
materials are from physics and math, and the content can be dense!

In the end, I hope you find the models and their structures interesting.
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Part I: Kinetic models

Multiscale Models

Time

Continuum Theory
(Navier-Stokes)

Kinetic Theory
(Boltzmann)

Molecular Dynamics
(Newton's Equation)

Quantum Mechanics
(Schrödinger)

1s

10−6 s

10−10s

10−15s

1A° 1nm 1µm 1m Space

Figure: Figure from E & Engquist, AMS Notice, 2003

Kinetic model provide a mesoscopic description of interacting particle
system, and is the key for multiscale modeling connecting MD & Fluid
equations.
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Part I: Kinetic models

Boltzmann Transport Equations (BTE)

Next, I will describe 3 classical examples of kinetic models.
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Part I: Kinetic models

Example I: Classical Boltzmann from Rarefied Gas

Equations of motion

{
dxi
dt = vi
dvi
dt = Fi

m

where Fi accounts for external force and particle in-
teractions (e.g. binary collision terms).

x

v

m

For a N-particle system, we will have the state vector
(x1, . . . xN , v1, . . . , vN). This has 6N unknowns, and in realistic case
N ≈ 1020.

Yingda Cheng (VT) Kinetic & High-D PDEs VT-ANA Page 7



Part I: Kinetic models

Statistical description to the rescue

The Boltzmann equation considers the Probability Density Function
(pdf) f (t, x, v), where f (t, x, v)dxdv describes the probability of finding
one particle in an infinitesimal volume dxdv centered at the point (x, v) of
the phase space. BTE reads

Df

Dt
=

∂f

∂t
+ v · ∇xf︸ ︷︷ ︸
transport

= Q(f , f )︸ ︷︷ ︸
collision
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Part I: Kinetic models

Illustration: Microscopic process1

Note: we switched v to ξ.

1C. Cercignani. Rarefied Gas Dynamics: From Basic Concepts to Actual
Calculations. Cambridge University Press, Cambridge, 2000.
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Part I: Kinetic models

Derivation2

We consider the marginal distribution P(1)(x1, ξ1, t), which is probability
of finding particle 1 at (x1, ξ1, t).

By molecular chaos assumption
P(2)(x1, ξ1, x2, ξ2, t) = P(1)(x1, ξ1, t)P

(1)(x2, ξ2, t), then

2C. Cercignani. Rarefied Gas Dynamics: From Basic Concepts to Actual
Calculations. Cambridge University Press, Cambridge, 2000.
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Part I: Kinetic models

Properties

Now P(1) is f , and we have

The right hand side Q(f , f ) models the binary particle collision, and
satisfies the following properties.∫

Q(f , f )dξ = 0 mass conservation.∫
Q(f , f )ξdv = 0 momentum conservation.∫
Q(f , f )|ξ|2dv = 0 energy conservation.∫
Q(f , f )log(f )dv ≤ 0 Boltzmann H-theorem. Further Q(f , f ) = 0

iff. f is a Maxwellian distribution. (statistical equilibrium)
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Part I: Kinetic models

Bridging the scales

We have derived the original version of the BTE from microscopic
physical laws. (Model reduction from micro to meso).

Now, we introduce scaling Kn = l/d = ϵ.

ft + ξ · ∇x f =
1

ϵ
Q(f , f ).

As ϵ → 0, this is dense gas. We can derive the Euler/NS equations
through Chapman-Enskog expansions of the BTE. (Model reduction
from meso to macro).

ϵ → ∞, particle free flow. (This is meso scale, hard to reduce.)
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Part I: Kinetic models

Example II: Radiation transport

So far, we have derived the original version of the BTE. It looks too
complicated. As mathematicians, we like to simplify.

Perhaps, the most famous simplified version is the BGK model ( a
nonlinear relaxation model).

But here let’s consider an even simpler model: a linear relaxation
model.

v ∈ [−1, 1], ϵft + vfx =
ρ− f

ϵ
, where ρ =

∫ 1

−1
fdv

With macro-micro decomposition f = f0 + ϵg , when ϵ → 0,
f0 = ρ, g = −vρx with ρt = −

∫ 1
−1 vgxdv = 1

3ρxx . Heat equation.

Yingda Cheng (VT) Kinetic & High-D PDEs VT-ANA Page 13



Part I: Kinetic models

Example II: Radiation transport

So far, we have derived the original version of the BTE. It looks too
complicated. As mathematicians, we like to simplify.

Perhaps, the most famous simplified version is the BGK model ( a
nonlinear relaxation model).

But here let’s consider an even simpler model: a linear relaxation
model.

v ∈ [−1, 1], ϵft + vfx =
ρ− f

ϵ
, where ρ =

∫ 1

−1
fdv

With macro-micro decomposition f = f0 + ϵg , when ϵ → 0,
f0 = ρ, g = −vρx with ρt = −

∫ 1
−1 vgxdv = 1

3ρxx . Heat equation.

Yingda Cheng (VT) Kinetic & High-D PDEs VT-ANA Page 13



Part I: Kinetic models

Example II: Radiation transport

So far, we have derived the original version of the BTE. It looks too
complicated. As mathematicians, we like to simplify.

Perhaps, the most famous simplified version is the BGK model ( a
nonlinear relaxation model).

But here let’s consider an even simpler model: a linear relaxation
model.

v ∈ [−1, 1], ϵft + vfx =
ρ− f

ϵ
, where ρ =

∫ 1

−1
fdv

With macro-micro decomposition f = f0 + ϵg , when ϵ → 0,
f0 = ρ, g = −vρx with ρt = −

∫ 1
−1 vgxdv = 1

3ρxx . Heat equation.

Yingda Cheng (VT) Kinetic & High-D PDEs VT-ANA Page 13



Part I: Kinetic models

Example II: radiative transfer

That looks too simple. Let’s consider a similar but ’real’ problem from
nuclear engineering: the neutron transport 3

Linear equation: steady state version

Ω · ∇xφ+Σt(x)φ = Σs(x)(Sφ)(x) + Q(x), x ∈ Ωx, Ω ∈ Sd−1, (1)

where the nonnegative Σs(x), Σa(x) and Σt = Σs +Σa, respectively, are
the scattering, absorption and total cross sections. Q(x) is an external
source. Sφ = ⟨φ⟩ := 1

|Sd−1|
∫
Sd−1 φ(·,Ω)dΩ.

3Lewis, Elmer Eugene, and Warren F. Miller. Computational methods of neutron
transport. (1984).
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Part I: Kinetic models

Example II

If Σs is large, this is optically thick region, more towards the diffusion
limit.

We can have device configuration with largely varying and
discontinuous scattering coefficient.

Alternative formulation: time dependent RTE, and also eigenvalue
problem for nuclear reactor criticality.

This model is also used in astrophysics and in optical tomography.
Understanding thermal radiative transfer is key to the inertial
confinement fusion (ICF).
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Part I: Kinetic models

Example III: Vlasov dynamics in collisionless plasma

Now we switch gear to another nonlinear kinetic system. The Vlasov
equation is the key to understanding kinetic effects in plasmas 4.

4Bittencourt, J. A. (2004). Fundamentals of plasma physics. Springer Science &
Business Media
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Part I: Kinetic models

The one-species Vlasov-Maxwell (VM) system

The single-species VM system under the scaling of the characteristic time
by the inverse of the plasma frequency ω−1

p and length scaled by the
Debye length λD , and characteristic electric and magnetic field as
Ē = B̄ = −mcωp/e is

∂t f + v · ∇xf + (E+ v × B) · ∇vf = 0 ,

∂E

∂t
= ∇x × B− J,

∂B

∂t
= −∇x × E ,

∇x · E = ρ− ρi , ∇x · B = 0 ,

where the density and current density are defined as

ρ(x, t) =

∫
Rn

f (x, v, t)dv, J(x, t) =

∫
Rn

f (x, v, t)vdv.

and ρi is the ion density.
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Part I: Kinetic models

The Vlasov-Ampère (VA) and Vlasov-Poisson (VP) system

In the zero-magnetic limit, the VM system becomes

∂t f + v · ∇xf + E · ∇vf = 0 , (2)
∂E
∂t = −J, ∇x · E = ρ− ρi ,

This leads to either the Vlasov-Ampère (VA) system

∂t f + v · ∇xf + E · ∇vf = 0 , (3)
∂E
∂t = −J,

or the Vlasov-Poisson (VP) system

∂t f + v · ∇xf + E · ∇vf = 0 , (4)

∇x · E = ρ− ρi ,

They are equivalent when the charge continuity equation

ρt +∇x · J = 0

is satisfied. (No external field)
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Part I: Kinetic models

A little bit about the models

Mass and energy
∫
fv2dxdv +

∫
(E 2 +B2)dx is preserved. The system

is Hamiltonian.

To understand VP system, let’s simplify and consider particle free
streaming, ft + vfx = 0.
The exact solution is f (t, x , v) = f0(x − vt, v). Therefore, | ∂f∂v | ≈ t
increase with time.

Without collision, this gives rise to ‘filamentation’. Thin filaments will
occur in the phase space over time. Eventually, the solvers all run out
of resolution.

The relevant collisional term is from electron scattering, e.g. Coulomb
collisions. This gives rise to the Landau-Fokker-Planck equation. This
is the fundamental model in magnetic confinement fusion (MCF).

Nonlinearity gives rise to many interesting physics.
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Part I: Kinetic models

Summary

BTE models the PDF (this is a high dimensional function)

There are two parts of BTE: transport and collision.

In some regime (ϵ → 0, collision dominated), we recover macroscopic
equations by rigorous/heuristic argument. Analytic model reduction
In other regime (big ϵ), we can have transport dominated case. The
whole thing is Multiscale

There are rich structures for the solution (conservation, asymptotic
limit, Hamiltonian...).

The modeling and simulations are particularly relevant to national lab
(nuclear reactor, fusion energy). Applications not mentioned:
semiconductor device, astrophysics, social dynamics, etc.
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Part I: Kinetic models

Summary on numerics

Two classes of methods: deterministic and probabilistic.

Probabilistic methods include DSMC, particle in cell. Solutions are
noisy.

Deterministic methods (i.e. PDE solvers). For gas Boltzmann, fast
spectral method. RTE: DG in x and discrete coordinate in angles.
Vlasov: semi-Lagrangian, DG etc.

Computational challenges: need to observe physical laws
(conservation), intrinsic multiscale behavior (the model can span
several regimes, e.g. from transport dominated to diffusion dominated
regimes).

Main computational challenge: high dimensions.

Yingda Cheng (VT) Kinetic & High-D PDEs VT-ANA Page 21



Part II: High dimensional scientific computing
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Part II: High dimensional scientific computing

Overview

Kinetic models are in high dimensions.

Other high dimensional models: Hamilton-Jacobi-Bellman (HJB)
from control, Schröndinger equation from quantum dynamics.

Parametric PDEs can be of high dimension.

Even for lower dimensional PDEs, we can ’unfold’ the complexity into
higher dimensions.

High D problem is hard. DOF scales like O(Nd), fixed order error is
O(N−k), therefore error behaves like O(DOF−k/d). No storage, No
accuracy!
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Part II: High dimensional scientific computing

Wavelet compression

We are interested in solving high dimensional PDEs, and developing
numerical solvers that has stability and accuracy (if possible).

The main tools we use are multiresolution analysis (MRA).

Wavelet compression is widely used in signal and image processing.
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Part II: High dimensional scientific computing

Sparse grid: a tool to break the curse of dimensionality

Sparse grid method is introduced by Smolyak (63) for high
dimensional quadrature, and widely used for uncertainty
quantification Xiu, Hesthaven (05...).

Sparse grid PDE solver: Zenger (91), Griebel (91,98,05...). Most
work focus on continuous FEM, and spectral methods.

Figure: From Garcke, SG in a nutshell
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Part II: High dimensional scientific computing

Our approach

Our work & outline for this section

Sparse grid DG method use multiwavelet (from MRA) and the DG
weak form as building blocks.

Adaptive sparse grid DG method perform thresholding based on
hierarchical coefficients.

For nonlinear problems, we developed new interpolatory
multiwavelets.
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Part II: High dimensional scientific computing Sparse grid DG method
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Part II: High dimensional scientific computing Sparse grid DG method

The basics

Consider Ω = [0, 1] and define n-th level grid

Ωn = {I jn = (2−nj , 2−n(j + 1)], j = 0, . . . , 2n − 1}
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Part II: High dimensional scientific computing Sparse grid DG method

MRA

Conventional approximation space on the n-th level grid Ωn

V k
n = {v : v ∈ Pk(I jn), ∀ j = 0, . . . , 2n − 1}

dim(V k
n ) = 2n(k + 1)

Nested structure
V k

0 ⊂ V k
1 ⊂ V k

2 ⊂ V k
3 ⊂ · · ·

W k
n : orthogonal complement of V k

n−1 in V k
n , for n > 1, represents the finer level details

when the mesh is refined, satisfying

V k
n−1 ⊕W k

n = V k
n

W k
n ⊥ V k

n−1

Let W k
0 := V k

0 , then

V k
N =

⊕
0≤n≤N

W k
n
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Part II: High dimensional scientific computing Sparse grid DG method

What does it mean?

Let Pk
n denotes the L2 projection on to mesh level n, then

Pk
N f = Pk

0 f︸︷︷︸
V k
0

+(Pk
1 − Pk

0 )f︸ ︷︷ ︸
W k

1

+(Pk
2 − Pk

1 )f︸ ︷︷ ︸
W k

2

+ · · ·+ (Pk
N − Pk

N−1)f︸ ︷︷ ︸
W k

N
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Part II: High dimensional scientific computing Sparse grid DG method

Bases on different levels for k = 0
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Part II: High dimensional scientific computing Sparse grid DG method

Higher order

For k = 1

Arbitrary order k : we use L2 orthogonal multiwavelets by Alpert (93).
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Part II: High dimensional scientific computing Sparse grid DG method

Approximation space in multi-dimensions

Consider 2D case, x = (x1, x2) ∈ Ω = [0, 1]2 and multi-index l = (l1, l2) ∈ N2
0

The standard rectangular grid Ωl with mesh size

hl := (2−l1 , 2−l2)

h := min{2−l1 , 2−l2}

For each I jl = {(x1, x2) : xi ∈ (2−li ji , 2
−li (ji + 1)]}, the traditional tensor-product polynomial space

is
Vk

l = {v : v(x) ∈ Pk(I jl ), 0 ≤ j ≤ 2l − 1}

Pk denotes polynomial of degree at most k in each dimension.

Uniform grid: l1 = l2 = N,
Vk

l = Vk
N , then

Vk
N := V k

N,x1 × V k
N,x2 =

⊕
|l|∞≤N

Wk
l

where
Wk

l := W k
l1,x1 ×W k

l2,x2

The basis functions for Wk
l can be defined by a tensor product

v j
i,l(x) :=

2∏
t=1

v jt
it ,lt

(xt), jt = 0, . . . ,max(0, 2lt−1 − 1), it = 1, . . . , k + 1
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Part II: High dimensional scientific computing Sparse grid DG method

Full grid approximation space

Full grid space:

Vk
N =

⊕
|l|∞≤N

Wk
l

d = 2, N = 2, k = 0

1 1

-1

1
1-
1

1 1

-1

1

1 -1

-1 1

2 2

22

2

2 2

-2 -2

-2-2

-2

-2 -2

-22

-1

W00 W20W10

W01
W11

W02
W12

W21

W22

dim(Vk
N) = 2Nd(k + 1)d or O(h−d)
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Part II: High dimensional scientific computing Sparse grid DG method

Sparse grid approximation space

We consider the sparse grid space: V̂k
N :=

⊕
|l|1≤N Wk

l

1 1

-1

1
1-
1

1 1

-1

1

1 -1

-1 1

-1

W00 W20W10

W01
W11

W02

A viewpoint without using multiwavelet space: V̂k
N =

⊕
|l|1≤N Vk

l .

dim(V̂k
N) = O(2NNd−1(k + 1)d) or O(h−1| log2 h|

d−1)
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Part II: High dimensional scientific computing Sparse grid DG method

Sparse grid DG

Consider the linear transport equation with variable coefficient{
ut +∇ · (α(x, t) u) = 0, x ∈ Ω = [0, 1]d ,

u(0, x) = u0(x),
(5)

The semi-discrete sparse grid DG 5 formulation for (5) is defined as follows: find
uh ∈ V̂k

N , such that∫
Ω

(uh)t vh dx =

∫
Ω

uhα · ∇vh dx−
∑
e∈Γ

∫
e

α̂uh · [vh] ds, (6)

.
=A(uh, vh)

for ∀ vh ∈ V̂k
N , where α̂uh defined on the element interface denotes a monotone

numerical flux.

5Guo, Cheng, SISC, 2016
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Part II: High dimensional scientific computing Sparse grid DG method

Stability (constant coefficient case)

Theorem (Guo, Cheng, SISC, 2016)

The DG scheme (6) for (5) is L2 stable when α is a constant vector, i.e.

d

dt

∫
Ω
(uh)

2 dx = −
∑
e∈Γ

∫
e

|α · n|
2

|[uh]|2ds ≤ 0. (7)
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Part II: High dimensional scientific computing Sparse grid DG method

Error estimate (constant coefficient case)

Theorem (Guo, Cheng, SISC, 2016)

Let u be the exact solution, and uh be the numerical solution to the semi-discrete scheme (6) with
numerical initial condition uh(0) = Pu0. For k ≥ 1, u0 ∈ Hp+1(Ω), 1 ≤ q ≤ min{p, k}, N ≥ 1,
d ≥ 2, we have for all t ≥ 0,

∥uh − u∥L2(ΩN) ≤(
2
√

Cd ||α||2t C⋆(k, q, d ,N) + (¯̄ck,0,q + B0(k , q, d)κ0(k , q,N)d)2−N/2
)
2−N(q+1/2)|u0|Hq+1(Ω),

where Cd is a generic constant with dependence only on d ,
C⋆(k, q, d ,N) = maxs=0,1

(
¯̄ck,s,q + Bs(k , q, d)κs(k , q,N)d

)
. The constants

¯̄ck,s,q, Bs(k , q, d), κs(k, q,N) are defined in L2 projection error estimates.

Convergence rate O((log h)dhk+1/2).
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Linear advection: sparse grid DG

We consider the following linear advection problem
ut +

d∑
m=1

uxm = 0, x ∈ [0, 1]d ,

u(0, x) = sin

(
2π

d∑
m=1

xm

)
,

(8)

subject to periodic boundary conditions.
In the simulation, we compute the numerical solutions up to two periods in
time, meaning that we let final time T = 1 for d = 2, T = 2/3 for d = 3,
and T = 0.5 for d = 4.
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Error and DOF
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Adaptivity

Sparse grid has poor resolution when function is not smooth.

We developed adaptive sparse grid DG method (Guo, Cheng, SISC,
2017) to address this issue.

The idea is to threshold based on the hierarchical coefficients, like
MRA for image processing.

Note: when the solution is regular, adaptive sparse grid will return to
standard sparse grid method, retaining its advantage for high
dimensional problems.
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Numerical example

Vlasov-Poisson/Vlasov-Maxwell up to 4D. Example: Landau damping
t = 10.6

(a) Solution (b) Active element

6Guo, Cheng, SISC, 2017
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Nonlinear problems

Example: nonlinear source term f (u) requires evaluating terms∫
Ω
f (uh)vhdx =

∑
K

∫
K
f (uh)vhdx ,

where uh is represented by multiwavelet basis functions.

We cannot afford to sum up on all elementary cells K as this requires
O(h−d) operations.

The idea is to switch to nodal basis and evaluate∫
Ω
If (uh)vhdx .

Next, we will demonstrate the construction of I.
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Part II: High dimensional scientific computing Adaptivity and nonlinearity

1D: nested points

Consider the domain I = [0, 1], we use the same notation.In addition, we
define k + 1 distinct points on each cell

x ji ,n = 2−nj + 2−nαi (9)

with αi ∈ [0, 1], i = 1, . . . , k + 1.
In particular, the collection of those points X k

n = {x ji ,n} is called nested
points, if

X k
0 ⊂ X k

1 ⊂ X k
2 ⊂ · · · . (10)
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1D

Since {X k
n } are nested, the points can be rearranged in such a way that

X k
n = X k

0 ∪ X̃ k
1 ∪ · · · ∪ X̃ k

n , with X̃ k
n = X k

n /X
k
n−1. (11)

Moreover, we can now define the subspace W̃ k
n , n ≥ 1, as the complement

of V k
n−1 in V k

n , in which the piecewise polynomials vanish at all points in
X k
n−1,

V k
n = V k

n−1 ⊕ W̃ k
n . (12)

This corresponds to

I kN f = I k0 f︸︷︷︸
V k
0

+(I k1 − I k0 )f︸ ︷︷ ︸
W̃ k

1

+(I k2 − I k1 )f︸ ︷︷ ︸
W̃ k

2

+ · · ·+ (I kN − I kN−1)f︸ ︷︷ ︸
W̃ k

N

6Tao, Jiang, Cheng JCP 2021
Yingda Cheng (VT) Kinetic & High-D PDEs VT-ANA Page 46



Part II: High dimensional scientific computing Adaptivity and nonlinearity

1D-Example

0 1/4 1/2 3/4 1
-1

0

1

2
N = 0

0 1/4 1/2 3/4 1
-1

0

1

2
N = 1

(c) P1: x0 = 0, x1 = 1/2

0 1/4 1/2 3/4 1
0

1
N = 0

0 1/4 1/2 3/4 1
0

1
N = 1

(d) P1: x0 = 0, x1 = 1

Figure: Interpolation points and multiwavelets: P1.

6Tao, Jiang, Cheng JCP 2021
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Summary

Similarly, the approach extends to Hermite interpolation. One can
convert between point (derivative) values to multiwavelet coefficients
using fast wavelet transform.

For multi-D, the approach works for both sparse grid and adaptive
sparse grid.

Incorporating this into numerical schemes requires a bit more than
fast wavelet transform. Fast matrix-vector product Shen, Yu (10, 12)
is needed. We show in Huang, Cheng (20), Huang, Guo, Cheng (22)
how the algorithm works.
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Numerical example: HJ/HJB equations (with LDG solver)

3D Eikonal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) (b)

Figure: (a) 2D cut. (b) Active elements. Error tolerance ϵ=10−7.

6Guo, Huang, Tao, Cheng JCP 2021
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Conclusions and Outlook

To design Sparse grid DG solvers, we need tools from numerical
PDEs, signal processing and approximation theory. I find this journey
very inspiring and enriching.

In high dimensional scientific computing, another main compression
technique is the low rank method. We plan to investigate low rank
tensor methods for solving time dependent PDE models. This will
draw on knowledge from numerical PDEs and linear algebra.

There is also whole arsenal of tools in ’model order reduction’. We
have developed some ROMs for kinetic equations by reduced basis
methods and machine learning. We are interested in exploring the
data driven modeling aspects, perhaps in combination with the high
dimensional solvers mentioned before.
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The END!

Thank You!
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