
Sparse Grid Discontinuous Galerkin (DG) Methods for
High Dimensional PDEs

Yingda Cheng

Michigan State University

Midwest NA Day, 2022

Joint work with Wei Guo, Zhanjing Tao, Juntao Huang, Yan Jiang, Yuan
Liu

Yingda Cheng (MSU) SG-DG MWNADAY, 2022 Page 1



Introduction

Outline

1 Introduction

2 Numerical methods

3 Nonlinear PDEs

4 Applications & Numerical tests

5 Conclusions

Yingda Cheng (MSU) SG-DG MWNADAY, 2022 Page 2



Introduction

Motivation

We are interested in computing a class of high dimensional PDEs.

Example includes: high dimensional kinetic transport problem
(Vlasov, Boltzmann) in plasma, semiconductor device simulations,
high dimensional Hamilton-Jacobi equations.

Conventional deterministic numerical solvers runs into the curse of
dimensionality.
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Introduction

The discontinuous Galerkin method

This is a class of finite element method using piecewise “discontinuous” approximation
space, and is widely used in many applications.

Invented by Reed and Hill (73) for neutron transport. First analysis by Lesaint and
Raviart (74).

Runge-Kutta discontinuous Galerkin (RKDG) method by Cockburn and Shu (89,
90,...) for general conservation laws.

DG methods for elliptic equations and parabolic equations, see review paper
Arnold, Cockburn, Brezzi, Marini (02).

Suitable for calculating transport problems.

Flexibility with the mesh (hanging nodes, nonconforming mesh);

Flexibility with choice of approximation space;

Compact scheme, highly parallelizable;

Provable convergence properties.

Adaptivity

x Large number of degrees of freedom.
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Introduction

Sparse grid method: breaking the curse of dimensionality

Sparse grid is first introduced in the quadrature context Smolyak
(63), introduced by Zenger (91), developed by Griebel (91,98,05...),
widely used in UQ framework Xiu, Hesthaven (05...).

When solving high-dimensional PDEs, sparse grid method has been
incorporated in
▶ Finite difference/volume/element methods: Griebel (98); Griebel,

Zumbusch (99). Hemker (95); Bungartz, Griebel (04); Schwab, Suli,
Todor (08).

▶ Spectral methods: Griebel (07); Gradinaru (07); Shen, Wang (10);
Shen, Yu (10, 12).

▶ DG methods: Wang et al JCP, 2016, Guo, Cheng, SISC, 2016, 2017,
Tao et al JCP, SISC, 2019, Liu et al, JCP 2019, Tao et al, JCP, 2020,
Huang et al, SISC 2020.
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Numerical methods

Hierarchical decomposition of
piecewise polynomial spaces in one dimension

Consider Ω = [0, 1] and define n-th level grid

Ωn = {I jn = (2−nj , 2−n(j + 1)], j = 0, . . . , 2n − 1}
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Numerical methods

Hierarchical decomposition of
piecewise polynomial spaces in one dimension

Conventional approximation space on the n-th level grid Ωn

V k
n = {v : v ∈ Pk(I jn), ∀ j = 0, . . . , 2n − 1}

dim(V k
n ) = 2n(k + 1)

Nested structure
V k

0 ⊂ V k
1 ⊂ V k

2 ⊂ V k
3 ⊂ · · ·

W k
n : orthogonal complement of V k

n−1 in V k
n , for n > 1, represents the finer level details

when the mesh is refined, satisfying

V k
n−1 ⊕W k

n = V k
n

W k
n ⊥ V k

n−1

Let W k
0 := V k

0 , then

V k
N =

⊕
0≤n≤N

W k
n

dim(W k
n ) =

⌈
2n−1

⌉
(k + 1)
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Numerical methods

Background for multiwavelet in DG context

Haar wavelet Haar (1910).

L2 orthogonal multiwavelet bases Alpert (1993).

Adaptive multiresolution DG schemes Calle et al. (2005), Archibald
et al. (2011), Hovhannisyan et al. (2014), Gerhard et al. (2015)...

Multiwavelet trouble cell indicator Vuik, Ryan (2014)...
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Numerical methods

Hierarchical orthonormal bases: Alpert’s multiwavelet

Bases in W k
0 : scaled orthonormal Legendre polynomials.

Bases in W k
1 :

hi (x) = 21/2fi (2x − 1), i = 1, . . . , k + 1

The orthonormal, vanishing-moment functions {fi (x)}k (Alpert 93), which are supported
on (−1, 1) and depend on k, will be defined later.

Bases in W k
n , n ≥ 1

v j
i,n(x) = 2(n−1)/2 hi (2

n−1x − j), i = 1, . . . , k + 1, j = 0, . . . , 2n−1 − 1

Orthonormality of multiwavelet bases across different hierarchical levels∫ 1

0

v j
i,n(x)v

j′

i′,n′(x) dx = δii′δnn′δjj′
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Numerical methods

Bases on different levels for k = 0
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Numerical methods

Bases on different levels for k = 1
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Numerical methods

Approximation space in multi-dimensions

Consider 2D case, x = (x1, x2) ∈ Ω = [0, 1]2 and multi-index l = (l1, l2) ∈ N2
0

The standard rectangular grid Ωl with mesh size

hl := (2−l1 , 2−l2)

h := min{2−l1 , 2−l2}

For each I jl = {(x1, x2) : xi ∈ (2−li ji , 2
−li (ji + 1)]}, the traditional tensor-product polynomial space

is
Vk

l = {v : v(x) ∈ Pk(I jl ), 0 ≤ j ≤ 2l − 1}

Pk denotes polynomial of degree at most k in each dimension.

Uniform grid: l1 = l2 = N,
Vk

l = Vk
N , then

Vk
N := V k

N,x1 × V k
N,x2 =

⊕
|l|∞≤N

Wk
l

where
Wk

l := W k
l1,x1 ×W k

l2,x2

The basis functions for Wk
l can be defined by a tensor product

v j
i,l(x) :=

2∏
t=1

v jt
it ,lt

(xt), jt = 0, . . . ,max(0, 2lt−1 − 1), it = 1, . . . , k + 1
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Numerical methods

Full grid approximation space

Full grid space:

Vk
N =

⊕
|l|∞≤N

Wk
l

d = 2, N = 2, k = 0

1 1

-1

1
1-
1

1 1

-1

1

1 -1

-1 1

2 2

22

2

2 2

-2 -2

-2-2

-2

-2 -2

-22

-1

W00 W20W10

W01
W11

W02
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W21

W22
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Numerical methods

Sparse grid approximation space

We consider the sparse grid space: V̂k
N :=

⊕
|l|1≤N Wk

l

1 1

-1

1
1-
1

1 1

-1

1

1 -1

-1 1

-1

W00 W20W10

W01
W11

W02

A viewpoint without using multiwavelet space: V̂k
N =

⊕
|l|1≤N Vk

l .

dim(V̂k
N) = O(2NNd−1(k + 1)d) or O(h−1| log2 h|

d−1)
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Numerical methods

DG method on sparse grids: linear transport problems

Consider the linear transport equation with variable coefficient{
ut +∇ · (α(x, t) u) = 0, x ∈ Ω = [0, 1]d ,

u(0, x) = u0(x),
(1)

The semi-discrete DG formulation for (1) is defined as follows: find uh ∈ V̂k
N , such that∫

Ω

(uh)t vh dx =

∫
Ω

uhα · ∇vh dx−
∑
e∈Γ

∫
e

α̂uh · [vh] ds, (2)

.
=A(uh, vh)

for ∀ vh ∈ V̂k
N , where α̂uh defined on the element interface denotes a monotone

numerical flux.
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Numerical methods

Stability (constant coefficient case)

Theorem (L2 stability)

The DG scheme (2) for (1) is L2 stable when α is a constant vector, i.e.

d

dt

∫
Ω
(uh)

2 dx = −
∑
e∈Γ

∫
e

|α · n|
2

|[uh]|2ds ≤ 0. (3)
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Numerical methods

Error estimate (constant coefficient case)

Similar to Schwab, Suli, Todor (08), we can establish error estimate in L2 norm for the L2

projection operator, combining with an estimate for DG method, we get

Theorem (L2 error estimate)

Let u be the exact solution, and uh be the numerical solution to the semi-discrete scheme (2)
with numerical initial condition uh(0) = Pu0. For k ≥ 1, u0 ∈ Hp+1(Ω), 1 ≤ q ≤ min{p, k},
N ≥ 1, d ≥ 2, we have for all t ≥ 0,

∥uh − u∥L2(ΩN) ≤(
2
√

Cd ||α||2t C⋆(k, q, d ,N) + (¯̄ck,0,q + B0(k , q, d)κ0(k , q,N)d)2−N/2
)
2−N(q+1/2)|u0|Hq+1(Ω),

where Cd is a generic constant with dependence only on d ,
C⋆(k, q, d ,N) = maxs=0,1

(
¯̄ck,s,q + Bs(k , q, d)κs(k , q,N)d

)
. The constants

¯̄ck,s,q, Bs(k , q, d), κs(k, q,N) are defined in L2 projection error estimates.

Convergence rate O((log h)dhk+1/2).
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Numerical methods

Linear advection: sparse grid DG

We consider the following linear advection problem
ut +

d∑
m=1

uxm = 0, x ∈ [0, 1]d ,

u(0, x) = sin

(
2π

d∑
m=1

xm

)
,

(4)

subject to periodic boundary conditions.
In the simulation, we compute the numerical solutions up to two periods in
time, meaning that we let final time T = 1 for d = 2, T = 2/3 for d = 3,
and T = 0.5 for d = 4.
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Table: L2 errors and orders of accuracy at T = 1 when d = 2, T = 2/3 when d = 3, and T = 0.5 when
d = 4. N is the number of mesh levels, hN is the size of the smallest mesh in each direction, k is the
polynomial order, d is the dimension. DOF denotes the degrees of freedom of the sparse approximation
space V̂ k

N . L
2 order is calculated with respect to hN .

N hN DOF L2 error order DOF L2 error order DOF L2 error order

k = 1, d = 2 k = 1, d = 3 k = 1, d = 4

4 1/16 192 9.17E-02 – 832 3.72E-01 – 3072 4.99E-01 –
5 1/32 448 1.90E-02 2.27 2176 1.19E-01 1.64 8832 2.40E-01 1.06
6 1/64 1024 4.81E-03 1.98 5504 2.96E-02 2.01 24320 9.84E-02 1.28
7 1/128 2304 1.27E-03 1.92 13568 8.85E-03 1.74 64768 3.21E-02 1.62

k = 2, d = 2 k = 2, d = 3 k = 2, d = 4

4 1/16 432 2.13E-03 – 2808 1.10E-02 – 15552 2.80E-02 –
5 1/32 1008 4.39E-04 2.28 7344 1.79E-03 2.63 44712 5.82E-03 2.27
6 1/64 2304 4.45E-05 3.30 18576 3.97E-04 2.17 123120 1.37E-03 2.09
7 1/128 5184 7.68E-06 2.54 45792 5.14E-05 2.95 327888 2.58E-04 2.41

k = 3, d = 2 k = 3, d = 3 k = 3, d = 4

3 1/8 320 6.36E-04 – 2432 2.10E-03 – 16128 4.09E-03 –
4 1/16 768 8.93E-05 2.83 6656 2.37E-04 3.14 49152 6.06E-04 2.75
5 1/32 1792 4.07E-06 4.46 17408 2.49E-05 3.25 141312 6.85E-05 3.14
6 1/64 4096 3.47E-07 3.55 44032 1.83E-06 3.76 389120 7.19E-06 3.25
7 1/128 9216 1.97E-08 4.14 108544 2.03E-07 3.18 1036288 6.36E-07 3.50



Numerical methods

Adaptivity

To resolve fine local structures/accelerate the computation

Adaptive wavelet methods.

Adaptive DG methods.

Adaptive sparse grid schemes. Zenger (90), Griebel (98), Bokanowksi
et al. (12)...

Multiresolution finite difference/finite volume methods for hyperbolic
PDEs. Harten (95), Bihari, Harten (97), Dahmen et al. (01), Cohen
et al. (03)

Adaptive multiresolution DG schemes Calle et al. (2005), Archibald
et al. (2011), Hovhannisyan et al. (2014), Gerhard et al. (2015)
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Numerical methods

Adaptive projection algorithm: parents and children

If a element V j′

l′ satisfies the following conditions:

There exists an integer m such that 1 ≤ m ≤ d and l′ = l+ em,
where em denotes the unit vector in xm direction, and the support of

V j′

l′ is within the support of V j
l .

|l′|∞ ≤ N,

then it is called a child element of V j
l . Accordingly, element V j

l is called a

parent element of V j′

l′ .

We use the hash table as the underlying data structure.
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Numerical methods

Refinement criteria

For a function u(x) ∈ Hp+1(Ω), we can show that

u(x) =
∑

l∈Nd
0

∑
j∈Bl,1≤i≤k+1 u

j
i,lv

j
i,l(x), where the hierarchical coefficient is

uji,l =
∫
Ω u(x)v ji,l(x)dx.

An element V j
l := {v ji,l, 1 ≤ i ≤ k+ 1} is considered important if∑
1≤i≤k+1

|uji,l|∥v
j
i,l(x)∥L1(Ω) > ε, if s = 1 (5)

 ∑
1≤i≤k+1

|uji,l|
2

 1
2

> ε, if s = 2 (6)

∑
1≤i≤k+1

|uji,l|∥v
j
i,l(x)∥L∞(Ω) > ε, if s = ∞, (7)

where ε is a prescribed error threshold.
A similar coarsening criteria can be defined.
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Numerical methods

Adaptive evolution algorithm

Input: Hash table H and leaf table L at tn, numerical solution unh ∈ Vk
N,H .

Parameters: Maximum level N, polynomial degree k , error constants ε, η,
CFL constant.
Output: Hash table H and leaf table L at tn+1, numerical solution
un+1
h ∈ Vk

N,H .

Prediction. Given a hash table H that stores the numerical solution
uh at time step tn, calculate ∆t. Predict the solution by the DG
scheme using space Vk

N,H and the forward Euler time stepping

method. Generate the predicted solution u
(p)
h .
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Numerical methods

Adaptive evolution algorithm

Refinement. Based on the predicted solution u
(p)
h , screen all

elements in the hash table H. If for element V j
l , the refining criteria

hold, then add its children elements to H and L provided they are not
added yet, and set the associated detail coefficients to zero. We also
need to make sure that all the parent elements of the newly added
element are in H (i.e., no “hole” is allowed in the hash table) and
increase the number of children for all its parent elements by one.
This step generates the updated hash table H(p) and leaf table L(p).
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Numerical methods

Adaptive evolution algorithm

Evolution. Given the predicted table H(p) and the leaf table L(p), we
evolve the solution from tn to tn+1 by the DG scheme using space
Vk

N,H(p) and the third order Runge-Kutta time stepping method. This

step generates the pre-coarsened numerical solution ũn+1
h .

Coarsening. For each element in the leaf table, if the coarsening
criteria hold, then remove the element from table H(p) and L(p). For
each of its parent elements in H(p), we decrease the number of
children by one. If the number becomes zero, i.e, the element has no
child, then it will be added to leaf table L(p). Repeat the coarsening
procedure until no element can be removed from the leaf list. Denote
the resulting hash table and leaf table by H and L respectively, and
the compressed numerical solution un+1

h ∈ Vk
N,H .
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Numerical methods

Linear advection: adaptive sparse grid DG

We test the convergence of adaptive scheme with smooth initial
u(0, x) =

∏d
m=1 sin

4 (πxm) .
For smooth case, we fix N = 7, and calculate

convergence rate with respect to ε Rεl =
log(el−1/el)

log(εl−1/εl)

convergence rate with respect to DOF RDOFl
=

log(el−1/el)

log(DOFl/DOFl−1)
,
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Table: Numerical error and convergence rate. N = 7. T = 1. L2 norm based criteria.

ε DOF L2 error RDOF Rε DOF L2 error RDOF Rε DOF L2 error RDOF Rε

k = 1, d = 2 k = 1, d = 3 k = 1, d = 4

1E-03 312 1.47E-02 1168 2.62E-02 2592 2.87E-02
5E-04 404 8.90E-03 1.93 0.72 1840 1.87E-02 0.75 0.49 4512 2.32E-02 0.39 0.31
1E-04 1148 1.70E-03 1.59 1.03 3920 7.26E-03 1.25 0.59 14976 9.49E-03 0.75 0.56
5E-05 1688 1.04E-03 1.28 0.71 6440 4.16E-03 1.12 0.80 23776 6.60E-03 0.79 0.53
1E-05 3588 2.42E-04 1.93 0.90 18624 8.83E-04 1.46 0.96 62368 2.13E-03 1.17 0.70
5E-06 4636 1.37E-04 2.23 0.82 25496 5.10E-04 1.75 0.79 111424 1.18E-03 1.02 0.86

k = 2, d = 2 k = 2, d = 3 k = 2, d = 4

5E-05 774 3.61E-04 4428 1.30E-03 26244 1.48E-03
1E-05 1584 8.78E-05 1.97 0.88 9585 2.58E-04 2.10 1.01 51840 5.30E-04 1.51 0.64
5E-06 1998 4.58E-05 2.80 0.94 13716 1.74E-04 1.09 0.57 69012 2.60E-04 2.49 1.03
1E-06 4023 1.43E-05 1.67 0.73 27081 4.15E-05 2.11 0.89 168723 9.46E-05 1.13 0.63
5E-07 5157 7.20E-06 2.76 0.99 40446 2.45E-05 1.32 0.76 226719 4.89E-05 2.23 0.95
1E-07 9072 1.80E-06 2.46 0.86 77463 7.06E-06 1.91 0.77 531684 1.24E-05 1.61 0.85

k = 3, d = 2 k = 3, d = 3 k = 3, d = 4

1E-05 1120 3.71E-05 10496 5.72E-05 58368 1.26E-04
5E-06 1184 2.92E-05 4.32 0.35 12032 4.91E-05 1.12 0.22 97280 7.53E-05 1.01 0.74
1E-06 2208 9.87E-06 1.74 0.67 18688 1.31E-05 3.00 0.82 129024 3.73E-05 2.49 0.44
5E-07 2864 4.85E-06 2.73 1.03 25984 1.09E-05 0.56 0.27 204800 1.34E-05 2.21 1.47
1E-07 3968 1.31E-06 4.02 0.82 43840 2.71E-06 2.66 0.86 409600 6.14E-06 1.13 0.49
5E-08 5760 7.88E-07 1.36 0.73 57472 1.50E-06 2.20 0.86 521216 2.79E-06 3.27 1.14



Numerical methods

Linear advection: discontinuous profile

We consider

u(0, x) =

{
1 (x1, x2) ∈ [12 −

√
6
2 , 12 +

√
6
2 ]2.

0 otherwise,
(8)

We fix N = 7, ε = 10−5 and compare the performance of the scheme with L1, L2

and L∞ based refinement/coarsening criteria up to final time T = 1.

(a) L1 criteria: solution (b) L1 criteria: active elements
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(c) L2 criteria: solution (d) L2 criteria: active elements

(e) L∞ criteria: solution (f) L∞ criteria: active elements
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Nonlinear PDEs

Nonlinear equations

Nonlinear equations pose simulation challenges. For example, we consider
nonlinear conservation law

ut +∇ · f (u) = 0, (9)

The semi-discrete DG formulation is∑
K

∫
K
(uh)tvhdx−

∑
K

∫
K
f (uh)·∇vhdx+

∑
K

∫
∂K

f̂ (uh)·nKvhds = 0 (10)

Replace terms like f (uh) by If (uh), where I is an interpolation operator
corresponding to the (adaptive) sparse grid space.
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Nonlinear PDEs

Our work

We introduce a class of high order local hierarchical interpolating basis
using the following steps:

locating nested interpolation points, finding associated multiwavelet
bases in 1D

using Smolyak’s idea to gain sparsity in high dimensions

Fast transforms between point values and coefficients are introduced
with operation counts of O(d ·DoF) even for adaptive algorithms.

We should take into account accuracy and stability when designing the
interpolation.
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Nonlinear PDEs

1D: nested points

Consider the domain I = [0, 1], we use the same notation.In addition, we
define k + 1 distinct points on each cell

x ji ,n = 2−nj + 2−nαi (11)

with αi ∈ [0, 1], i = 1, . . . , k + 1.
In particular, the collection of those points X k

n = {x ji ,n} is called nested
points, if

X k
0 ⊂ X k

1 ⊂ X k
2 ⊂ · · · . (12)
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Nonlinear PDEs

1D - Examples

P0 case: nested points

Case 1: x0 = 0;
Case 2: x0 = 1;

0 0.5 1
0

1
N = 0

0 0.5 1
0

1
N = 1

(g) P0: choice 1.

0 0.5 1
0

1
N = 0

0 0.5 1
0

1
N = 1

(h) P0: choice 2.

Figure: Interpolation points: P0.Yingda Cheng (MSU) SG-DG MWNADAY, 2022 Page 35



Nonlinear PDEs

1D-Example

P1 case:

Case 1: x0 = 0, x1 = 1/2;

Case 2: x0 = 0, x1 = 1;

Case 3: x0 = 1/3, x1 = 2/3;

Case 4: x0 = 1/2, x1 = 1;
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Nonlinear PDEs

1D-Example

0 1/4 1/2 3/4 1
-1

0

1

2
N = 0

0 1/4 1/2 3/4 1
-1

0

1

2
N = 1

(a) P1: choice 1.

0 1/4 1/2 3/4 1
0

1
N = 0

0 1/4 1/2 3/4 1
0

1
N = 1

(b) P1: choice 2.

Figure: Interpolation points: P1.

Similarly, we can construct bases based on Hermite interpolation.
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Nonlinear PDEs

1D

Since {X k
n } are nested, the points can be rearranged in such a way that

X k
n = X k

0 ∪ X̃ k
1 ∪ · · · ∪ X̃ k

n , with X̃ k
n = X k

n /X
k
n−1. (13)

Moreover, we can now define the subspace W k
n , n ≥ 1, as the complement

of V k
n−1 in V k

n , in which the piecewise polynomials vanish at all points in
X k
n−1,

V k
n = V k

n−1 ⊕W k
n . (14)

Thus, we have

V k
N =

⊕
0≤n≤N

W k
n .
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Nonlinear PDEs

1D

We now illustrate the computation of the multiwavelet coefficients based
on interpolation. For a given function f (x) ∈ C k+1([0, 1]), we define Ik

n [f ]
as the standard interpolation on V k

n . Next, we introduce the increment
interpolation operator

Ĩk
n :=

{
Ik
n − Ik

n−1, n ≥ 1
Ik
0 , n = 0.

(15)

Then, the interpolation operator Ik
N can be represented as

Ik
N [f ](x) =

N∑
n=0

Ĩk
n [f ](x) =

N∑
n=0

max(2n−1−1,0)∑
j=0

k+1∑
i=1

bji ,nφ
j
i ,n(x) (16)
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Nonlinear PDEs

1D

We can define an operator F−1 mapping from point values f (x ji ,n) to

hierarchical coefficients bji ,n

bji ,n = Ĩk
n [f ](x

j
i ,n) = F−1[f ] =

{
f (x0i ,0), n = 0,

f (x̃ ji ,n)−
∑k+1

l=1 f (x jl ,n−1)ϕl(x̃i ), n ≥ 1.

(17)

and similarly

f (x̃ ji ,n) =F [b] =

{
b0i ,0, n = 0,

bji ,n +
∑k+1

l=1 fh(x
j
l ,n−1)ϕl(x̃i ), n ≥ 1,

(18)
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Nonlinear PDEs

Summary

This procedure works for arbitrary order, and include the continuous
FEM case.

We can switch from Lagrange to Hermite interpolation as long as the
points are nested. This can help construct, e.g., C 1 FEM etc.

For multi-D, if we use V̂k
N :=

⊕
|l|1≤N Wk

l , this gives a standard
sparse grid method.

Adaptivity can be incorporated based on thresholding.

Fast transforms between point values and coefficients are introduced
with operation counts of O(d ·DoF) by method in Shen, Yu (10, 12).
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Nonlinear PDEs

Choice of interpolation

For nonlinear conservation laws: we use quadrature with one more
degree of accuracy.

Another consideration is stability: based on numerical experiments,
we found the Hermite interpolation is stable, while Lagrangian
interpolation is not.
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Nonlinear PDEs

Artificial viscosity

For capturing shock, we add artificial viscosity∑
K

∫
K

(uh)tvhdx−
∑
K

∫
K

f (uh)·∇vhdx+
∑
K

∫
∂K

f̂ (uh)·nKvhds−
∑
K

∫
K

ν(uh)∇uh·∇vhdx = 0.

(19)
where ν = ν(uh) > 0 is artificial viscosity depending on uh. The artificial viscosity is only
imposed in the leaf element and is determined in the following approach:

ν =

{
0, if se ≤ s0 + κ,

ν0h, otherwise.

where ν0 > 0 and κ are constants chosen empirically. In the computation, we typically
take ν0 = 1 and κ = 0. The parameters se and s0 are given as

se = log10

 ∑
1≤i≤k+1

|uj
i,l|

2

 1
2

, s0 = log10(2
−(k+1)|l|1). (20)

For smooth regions, se should be the same order as s0. In the discontinuous regions, se
should be much larger than s0.
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Nonlinear PDEs

Numerical results: 1D Burgers’ equation
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Figure: t = 0.1875. N = 8 and ϵ = 10−4. N = 9, k = 2,P3 Hermite interpolation.
red: elements with artificial viscosity
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Nonlinear PDEs

Numerical results: 2D KPP rotating wave problem

ut + sin(u)x + cos(u)y = 0.

The initial condition is

u0(x , y) =

3.5π, (x − 1/2)2 + (y − 1/2)2 ≤ 1

16
,

0.25π, otherwise.
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Figure: ε = 5E − 4,N = 7, k = 2,P3 Hermite interpolation
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Applications & Numerical tests
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Applications & Numerical tests

Kinetic equations

Vlasov-Poisson/Vlasov-Maxwell up to 4D. Example: Landau damping
t = 10
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Applications & Numerical tests

Hamilton-Jacobi equations

HJ/HJB equations (with LDG solver) up to 4D.
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Figure: Example HJB. T = 0.1. k = 2, M = 4. N = 7. ϵ=10−7. (a) Contour plot
of the numerical solution. (b) Numerical error distribution. (c) Active elements.
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Applications & Numerical tests

NLS equations

NLS (with IPDG solver). 2D NLS
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Figure: Example NLS. t = 0 and 1.5813. N = 7, k = 3, ϵ = 10−4 and η = 10−5.
(a) Numerical solution (b) Active elements.
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Applications & Numerical tests

Wave equations

Wave equation (with IPDG solver). 3D expanding wave in homogeneous
medium.
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Figure: Expanding wave in homogeneous medium in 3D at t = 0.5. N = 7 and
ϵ = 10−4 (a) numerical solution cut in 2D along x3 = 0 (b) Active elements.
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Conclusions

Conclusions

We design efficient & highly accurate numerical schemes for moderately
high dimensional PDEs.

DG methods: excellent for transport problems.

Sparse grid DG methods: works well for smooth solutions. Stability
and convergence properties can be well understood theoretically.

Adaptivity is naturally incorporated.

The schemes can be applied to a large class of PDEs.

Source code https:

//github.com/JuntaoHuang/adaptive-multiresolution-DG
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The END!

Thank You!
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