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Introduction

Overview of low rank methods for time-dependent
problems

Compute low rank solution of matrix differential equations

d

dt
X (t) = F (X (t), t), X (t) ∈ Rm1×m2 , X (0) = X0, (1)

Solvers can be cast into three groups:

Step truncation (ST) method. CHaRMNET work: Qiu, Taitano,
Chacon, Hamad.

Dynamic low rank approximation (DLRA). CHaRMNET work: Hu,
Haut, Hauck, Schotthöfer.

Space-time formalism.
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Introduction

Step truncation method

Idea: evolve the low rank solution for one time step by a traditional time
stepping method in an ambient space of higher rank, then performs a
truncation (by SVD with given tolerance).

Algorithm 1: Forward Euler scheme tn → tn+1

Input : numerical solution at tn : rank rn matrix X̂ n in its SVD
form UnΣn(V n)T .

Output : numerical solution at tn+1 : rank rn+1 matrix X̂ n+1 in its
SVD form Un+1Σn+1(V n+1)T .

Parameter: time step ∆t, error tolerance ε1, ε2

1 (Evolution). X̂ n+1,pre = X̂ n + ∆tT sum
ε1

(F (X̂ n, tn)).

2 (Truncation). X̂ n+1 = T sum
ε2

(X̂ n+1,pre).

Implicit schemes are hard to implement.
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Introduction

DLRA

DLRA constrains the solution on
the rank r matrix manifold
Mr = {X ∈ Rm1×m2 , rank(X ) = r}
at X (t).
It solves

d

dt
X (t) = ΠX (t)F (X (t), t),

where ΠX (t) is the orthogonal
projection onto the tangent space
TX (t)Mr .

Figure: From
https://www.waves.kit.edu/B9.php

BUG integrator: K−, L−, S− steps,
smaller subsystem to solve than the
original.
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Introduction

An example of failure of convergence of DLRA

For example, when X (t) is a rank 1 even function in both variables (say
X (t, x1, x2) = exp(−x2

1 ) exp(−x2
2 )) on a square domain with center (0, 0),

and F (X (t), t) = AXBT , with A = diag(x1) and B = diag(x2).
ΠX (t)F (X (t), t) = 0.
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Figure: Left: backward Euler, Right: BUG. Solid body rotation with diffusion

Error estimate
C∆t + ε+ ‖(I − ΠX (t))F (X , t)‖
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A new preconditioner for low rank GMRES

Goal

In practice, DLRA has been applied to many applications, showing
satisfactory performance.

Our goal is to develop an implicit step truncation scheme that
combines strength of ST and DLRA.
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A new preconditioner for low rank GMRES

low rank GMRES

For linear diffusion problem, with an implicit time scheme, we need to
solve for

C1XD
T
1 + C2XD

T
2 + · · ·CkXD

T
k := AX = b, (2)

where A : Rm1×m2 7→ Rm1×m2 is the associated linear operator.

Low rank GMRES (lrGMRES)

is based on GMRES.

and the iterates are stored in SVD form X = USV T .

Rank truncation is needed to bound the rank.
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A new preconditioner for low rank GMRES

low rank Krylov

Low rank Krylov methods have been developed for matrix/tensor.

Ballani, Grasedyck (2013). Dolgov (2013). Kressner, Sirkovic (2015).
Kressner, Tobler 2010, 2011. Coulaud, Giraud, Iannacito (2022).
Simoncini, Hao (2023).

Low rank truncation results in loss of orthogonality in the Krylov
subspace which makes analysis of convergence difficult.

The critical aspect is a good preconditioner, which will control both
the iteration number and intermediate rank.

Preconditioner has to be friendly to low rank, i.e. only operating on
the low rank factors. Candidate: multigrid, exponential sum.
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A new preconditioner for low rank GMRES

BUG preconditioner

Due to the good performance of DLRA/BUG in most cases, we propose to
use it as a preconditioner for lrGMRES.
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A new preconditioner for low rank GMRES

BUG preconditioner
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A new preconditioner for low rank GMRES

BUG preconditioner - choice of space

For the implicit midpoint schemes, USV T = X n is the numerical
solution at time step n.

For the BDF scheme, USV T =
∑l

j=0 ajX
n−j is a linear combination

of computed solutions at previous steps.

For the DIRK scheme, at the j−th inner stage, we take
USV T = X n−1,(j) which is the numerical solution at the j−th inner
stage of the previous time steps.
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A new preconditioner for low rank GMRES

BUG preconditioner - parameter study

We study the details of the following parameters: restart parameter,
rounding tolerance ε and stopping criteria.

Frequent restart benefits convergence.

Truncation tolerance should be chosen according to local truncation
error of the underlying scheme (next page).

Stopping:

ηA,b(xk) =
‖Axk − b‖

‖A‖2‖xk‖+ ‖b‖
≤ δ = ε,
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A new preconditioner for low rank GMRES

BUG preconditioner - truncation tolerance

Example (implicit midpoint+second order FD). ∆t = h, LTE = h3. For
diffusion operator hε(1 + ∆t/h2) = O(h3), we obtain ε = O(h3)

Theorem (Convergence)

Suppose the matrix differential equation (1) satisfies one-sided Lipschitz
condition

〈F (X , t)− F (Y , t),X − Y 〉 ≤ α‖X − Y ‖2.

The implicit midpoint method with low rank GMRES scheme, if iteration
terminates, applied to a linear diffusion type problem with the property
‖A‖2 ≤ C∆t

h2 , and mesh size ∆t = O(h), tolerance ε = O(h3), ε2 = O(h2)
is convergent of second order.

Further, we propose a hybrid preconditioner which alternates between
BUG and ES preconditioner.
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A new preconditioner for low rank GMRES

Numerical results

∂X

∂t
= b1(y)

∂

∂x

(
a1(x)

∂X

∂x

)
+ b2(y)

∂2(a2(x)X )

∂x∂y

+a3(x)
∂2(b3(y)X )

∂x∂y
+ a4(x)

∂

∂y

(
b4(y)

∂X

∂y

)
+ G (x , y , t) (3)

Example

a1(x) = 1 = b1(y), a2(x) = 0.8 = b3(y),

b2(y) = 1 = a3(x), a4(x) = 1 = b4(y), (4)
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Numerical results
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A new preconditioner for low rank GMRES

Numerical results

a1(x) = 1, b1(y) = 1 + 0.1 sin(πy),

a2(x) = 1, b2(y) = 1/η(1 + 0.1 sin(πy)),

a3(x) = 1, b3(y) = 1/η(1 + 0.1 sin(πy)),

a4(x) = 1, b4(y) = 1/η2(1 + 0.1 sin(πy)), (5)

with η = 1/10.
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Numerical results
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A new preconditioner for low rank GMRES

Numerical results -BDF4
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A new preconditioner for low rank GMRES

Conclusions and outlook

We developed low rank methods for discretizing stiff equations.

Future work: nonlinear problem, multiscale problem.

Some other ongoing work: reduced order model (ROM) for kinetic
equations. postprocessing for ROM. low rank for quantum mechanics.
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The END! Thank You!
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