Structure-preserving Low Rank Scheme for the Lindblad Master Equation

Yingda Cheng

Virginia Tech

Applied Numerical Analysis Seminar, Nov. 2024

Joint work with Daniel Appelö

Yingda Cheng (VT)

CPTP-Lindblad

VT-ANA Page 1

I ≡ ►

CPTP-Lindblad

▶ ৰ ≣ ▶ ≣ ৩৭০ VT-ANA Page 2

< □ > < □ > < □ > < □ > < □ >

Outline

Numerical methods

Yingda Cheng (VT)

CPTP-Lindblad

। VT-ANA Page 3

<ロト < 四ト < 三ト < 三ト

Mater equation

• Master equations are differential equations used to model the dynamics of systems that can be described as a probabilistic combination of some states.

When the probabilities of the elementary processes are known, one can write down a continuity equation for W, from which all other equations can be derived and which we will call therefore the master equation - Nordsieck, Lam, Uhlenbeck, 1940

- Example: $\frac{d}{dt}p = F(p, t) = Ap$, where p is a vector denoting the probability of the state.
- Quantum master equation deviates from the classical case because we have to take into account superpositions of states.¹

イロト 不得 トイラト イラト 一日

¹Campaioli, Cole, Hapuarchchi, 2023.

Quantum mechanics

• Consider a *d*-dimensional quantum system with Hilbert space \mathcal{H} . Let $\mathcal{B} := \{ |\phi_1\rangle, |\phi_2\rangle, ..., |\phi_d\rangle \}$ be an orthonormal basis for \mathcal{H} , so that $\langle \phi_i | \phi_j \rangle = \delta_{ij}$. Any pure state of the system can be expressed as

$$|\psi\rangle = c_1 |\phi_1\rangle + c_2 |\phi_2\rangle + \dots + c_d |\phi_d\rangle = \sum_{j=1}^d c_j |\phi_j\rangle, \qquad (1)$$

where the coefficient c_j are such that $\langle \psi | \psi \rangle = \sum_{j=1}^d |c_j|^2 = 1$. $p_i = |c_i|^2$ denotes the probability in state *i*.

< □ > < □ > < □ > < □ > < □ > < □ >

Quantum mechanics

• Consider a *d*-dimensional quantum system with Hilbert space \mathcal{H} . Let $\mathcal{B} := \{ |\phi_1\rangle, |\phi_2\rangle, ..., |\phi_d\rangle \}$ be an orthonormal basis for \mathcal{H} , so that $\langle \phi_i | \phi_j \rangle = \delta_{ij}$. Any pure state of the system can be expressed as

$$|\psi\rangle = c_1|\phi_1\rangle + c_2|\phi_2\rangle + \dots + c_d|\phi_d\rangle = \sum_{j=1}^d c_j|\phi_j\rangle,$$
(1)

where the coefficient c_j are such that $\langle \psi | \psi \rangle = \sum_{j=1}^d |c_j|^2 = 1$. $p_i = |c_i|^2$ denotes the probability in state *i*.

Schrödinger equation

$$\frac{d}{dt}|\psi(t)\rangle = -\frac{i}{\hbar}H|\psi(t)\rangle, \qquad (2)$$

where H is the Hamiltonian.

Yingda Cheng (VT)

Density matrix

General mixed state can be represented by $\{|\psi_j\rangle, p_j\}$. We can then by the density operator (matrix)

$$p = \sum_{j=1}^{d} p_j |\psi_j\rangle \langle \psi_j |, \qquad (3)$$

where $|\psi_j\rangle\langle\psi_j|$ is the outer product of $|\psi_j\rangle$ with itself.

- **9** Hermitian: $\rho = \rho^{\dagger}$. This implies that ρ has only real eigenvalues.
- **2 Positive**²: $\rho > 0$. That is, ρ eigenvalues $p_j \in [0, 1]$ are not negative.
- Tr $\rho = 1$, which can also be stated as $\sum_{j} p_{j} = 1$, i.e., the sum of its eigenvalues (probabilities) must add up to 1.

The diagonal entries ρ_{ii} (real) are called population, the off-diagonal (complex) entries ρ_{ij} are called coherence. However, ρ_{ii} is not sufficient to describe the state unlike the classical case.

²Or, more specifically, *positive semi-definite*.

Yingda Cheng (VT)

VT-ANA Page 6

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Example:qubit

We can define a basis of it by the orthonormal vectors: $\{|0\rangle, |1\rangle\}$. A pure state of the system would be any unit vector of \mathcal{H}_2 . It can always be expressed as a $|\psi\rangle = a|0\rangle + b|1\rangle$ with $a, b \in \mathbb{C}$ s. t. $|a|^2 + |b|^2 = 1$.

A mixed state is therefore represented by a positive unit trace operator.

$$\rho = \begin{pmatrix} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{pmatrix} = \rho_{00} |0\rangle\langle 0| + \rho_{01} |0\rangle\langle 1| + \rho_{10} |1\rangle\langle 0| + \rho_{11} |1\rangle\langle 1|, \qquad (4)$$

< □ > < □ > < □ > < □ > < □ > < □ >

von Neumann equation

• Closed system can be modeled by Schrödinger equation

$$rac{d}{dt}|\psi(t)
angle=-rac{i}{\hbar}H|\psi(t)
angle,$$

where H is the Hamiltonian.

• If H is time independent, we have

$$|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle.$$
 (5)

As *H* is a Hermitian operator, the operator $U = e^{-iHt}$ is unitary.

• The von-Neumann equation can be derived

$$\dot{\rho}(t) = -\frac{i}{\hbar}[H,\rho(t)], \qquad (6)$$

where we have used the commutator [A, B] = AB - BA.

Open quantum system

Figure: From: D. Manzano, A short introduction to the Lindblad master equation, 2020

Yingda Cheng (VT)

CPTP-Lindblad

VT-ANA Page 9

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Lindblad master equation

The Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation, often known as the *Lindblad* master equation,

$$\dot{\rho}(t) = -\frac{i}{\hbar}[H,\rho(t)] + \sum_{k} \gamma_{k} \left(L_{k}\rho(t)L_{k}^{\dagger} - \frac{1}{2} \left\{ L_{k}^{\dagger}L_{k},\rho(t) \right\} \right), \quad (7)$$

where $\{L_k\}$ are the *Lindblad*/jump/collapse operators representing some non-unitary processes like relaxation or decoherence that occur at some rates $\{\gamma_k\}$. $\{A, B\} = AB + BA$. Example: $L_{\downarrow} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, non-Hermitian.

CPTP map

 $B(\mathcal{H})$: space of all density matrices in the Hilbert space \mathcal{H} . A map $\mathcal{V}: B(\mathcal{H}) \to B(\mathcal{H})$ is called a *completely positive and trace-preserving map (CPTP-map)* if it is

- Trace preserving. $\operatorname{Tr}[\mathcal{V}A] = \operatorname{Tr}[A], \forall A \in B(\mathcal{H}).$
- Completely positive (see next page).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Completely positive

Definition

A map \mathcal{V} is positive iff $\forall A \in B(\mathcal{H})$ s.t. $A \ge 0 \Rightarrow \mathcal{V}A \ge 0$.

Maps a positive matrix to a positive matrix.

イロト イポト イヨト イヨト

Completely positive

Definition

A map \mathcal{V} is positive iff $\forall A \in B(\mathcal{H})$ s.t. $A \ge 0 \Rightarrow \mathcal{V}A \ge 0$.

Maps a positive matrix to a positive matrix. However, this is not enough.

Definition

A map \mathcal{V} is completely positive iff $\forall n \in \mathbb{N}$, $\mathcal{V} \otimes \mathbb{1}_n$ is positive.

Meaning: there exist composite systems, and our density matrix could be the partial trace of a more complicated state.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Completely positive

Complete positive \Rightarrow Positive, but not vice versa.

Example: matrix transpose operator is positive, but not complete positive.

Theorem (Choi's Theorem)

A linear map $\mathcal{V}: B(\mathcal{H}) \to B(\mathcal{H})$ is completely positive iff it can be expressed as

$$\mathcal{V}\rho = \sum_{i} V_{i}^{\dagger}\rho V_{i} \tag{8}$$

with $V_i \in B(\mathcal{H})$.

★ ∃ ► ★

Choi-Kraus

Theorem (Choi-Kraus' Theorem)

A linear map $\mathcal{V} : B(\mathcal{H}) \to B(\mathcal{H})$ is completely positive and trace-preserving iff it can be expressed as

$$\mathcal{V}\rho = \sum_{I} V_{I}^{\dagger}\rho V_{I} \tag{9}$$

with $V_l \in B(\mathcal{H})$ fulfilling

$$\sum_{I} V_{I} V_{I}^{\dagger} = \mathbb{1}_{\mathcal{H}}.$$
 (10)

A B b A B b

A beautiful result

If the solution to

$$\frac{d}{dt}\rho = \mathcal{L}\rho \tag{11}$$

イロト イポト イヨト イヨト

induces a CPTP map from $\rho(0)$ to $\rho(t)$, then (11) can be written in the form of Lindblad master equation.

Markovian CPTP generator \iff Lindblad master equation

Outline

Yingda Cheng (VT)

CPTP-Lindblad

VT-ANA Page 16

æ

<ロト <問ト < 目と < 目と

Numerical schemes

We would like to design numerical methods with the following properties

- CPTP, i.e. the map from ρ^n to ρ^{n+1} is CPTP map.
- High order accurate.
- Low rank. For quantum systems with low entropy or that are weakly coupled to the environment or for the early stage of the dynamics of systems initialized in a pure state, ρ can be approximated by low rank matrix.

< □ > < 同 > < 回 > < 回 > < 回 >

CPTP scheme

CPTP scheme: trace preserving, and

$$\rho^{n+1} \equiv \mathcal{G}\rho^n = \sum_I G_I^{\dagger}\rho^n G_I$$

with G_l to be determined.

- TP is relatively easy (can be done by renormalization).
- Key is to have a scheme that is in Kraus form.
- A negative result: no explicit Runge-Kutta method is CP³.

³Riesch, Jirasuchek, 2019

CPTP scheme

- Steinbach, Garraway, Knight, 1995 construct a first high order CPTP scheme using Taylor expansion.
- Other techniques include Picard iteration, and stochastic unraveling Cao, Lu, 2021, Wang, Li, 2024, Ding, Li, Lin, 2024.
- We reformulate the equation ⁴ (for simplicity, we write only one jump operator)

$$\frac{d}{dt}\rho(t) = \left(J\rho(t) + \rho(t)J^{\dagger}\right) + L\rho(t)L^{\dagger} \equiv \mathcal{L}_{J}\rho(t) + \mathcal{L}_{L}\rho(t), \quad (12)$$

where $J = -iH_{\text{eff}}$, $H_{\text{eff}} = H + \frac{1}{2i}L^{\dagger}L$. We treat $\mathcal{L}_{J}\rho(t)$ implicitly, and $\mathcal{L}_{L}\rho(t)$ explicitly. Note: connection with differential Lyapunov equation.

⁴Steinbach, Garraway, Knight, 1995

Yingda Cheng (VT)

CPTP-Lindblad

VT-ANA Page 19

イロト 不得 トイラト イラト 一日

Lawson integrator (Integrating factor)

$$\frac{d}{dt}q(t) = Jq(t) + q(t)J^{\dagger} \iff \frac{d}{dt}V(t) = JV(t), q = VV^{\dagger}$$
(13)

With $V(t + \Delta t) = U(\Delta t)V(t)$, we have $q(t + \Delta t) = U(\Delta t)q(t)U(\Delta t)^{\dagger}$, which is on Kraus form.

Therefore, we apply the Lawson integrator and get

$$\rho^{(i)} = U(c_i \Delta t) \rho_0 U(c_i \Delta t)^{\dagger} + \Delta t \sum_{j=1}^{i-1} a_{ij} U((c_i - c_j) \Delta t) \mathcal{L}_L \rho^{(j)} U((c_i - c_j) \Delta t)^{\dagger}, \quad i = 1, \dots, s,$$

$$\rho_1 = U(\Delta t) \rho_0 U(\Delta t)^{\dagger} + \sum_{i=1}^{s} b_i \Delta t U((1 - c_i) \Delta t) \mathcal{L}_L \rho^{(i)} U((1 - c_i) \Delta t)^{\dagger}, \quad (14)$$

As long as a_{ij} , b_i are non-negative, this is CP. In practice, the operator $U(\Delta t)$ can be taken as explicit/implicit scheme that matches with the order of accuracy of the lawson/RK method.

VT-ANA Page 20

Low rank method

- Idea: we solve for V(t) (the Cholesky factor), and perform low rank truncation according to error threshold. Chen, Farquhar, Parrish 21, Donatella, Denis, Le Boite, C. Ciuti, 21, McCaul, Jacobs, Bondar, 21
- This is done by rounding.

 $\mathbf{R} = R_1 R_1^{\dagger} + \ldots R_k R_k^{\dagger}$, with $R_j \in \mathbb{C}^{N \times r_j}$. Suppose $W = [R_1, \ldots, R_k]$, then $\mathbf{R} = WW^{\dagger}$ and the low rank truncation $\mathcal{T}_{\epsilon, r_{\max}}[\mathbf{R}]$ is defined as the truncated SVD of \mathbf{R} according to the rank threshold r_{\max} and energy cutoff ϵ .

< □ > < □ > < □ > < □ > < □ > < □ >

Low rank method

Question: will this truncation destroy CP?

イロト イヨト イヨト イヨト

Low rank method

Question: will this truncation destroy CP? No.

Theorem

The truncated SVD operator $\mathcal{T}_{\epsilon,r_{\max}}[A]$, where A is SPSD, is on Kraus form, and thus is a CP map.

Proof.

Since A is SPSD, its SVD has the form
$$A = U\Lambda U^{\dagger}$$
, and
 $\mathcal{T}_{\epsilon,r_{\max}}[A] = UD\Lambda D^{\dagger}U^{\dagger}$ where $D = \operatorname{diag}(\underbrace{1,\ldots,1}_{r},0\ldots,0)$. Therefore,
 $\mathcal{T}_{\epsilon,r_{\max}}[A] = UDU^{\dagger}A(UDU^{\dagger})^{\dagger}$ is on Kraus form.

In contrast, TDVP on Lindblad will destroy the structure.

Yingda Cheng (VT)

VT-ANA Page 22

< □ > < □ > < □ > < □ > < □ > < □ >

Numerical results: CP

Figure: Evolution of the population ρ_{33} . RK4 method (black), IF-exp (red, dashed), IF-Taylor 6 (blue) using a timestep of 0.1 femto-seconds.

VT-ANA Page 23

Numerical results: Jaynes-Cumming Model

$$H = \lambda (b\sigma^+ + b^{\dagger}\sigma^-), L = \sqrt{\kappa}b$$

Here

$$b = I_{2 \times 2} \otimes \hat{b}, \ \ \sigma^+ = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \otimes I_{m \times m}, \ \ \sigma^- = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes I_{m \times m}$$

and \hat{b} is the $m \times m$ lowering matrix with elements $\hat{b}_{l,l+1} = \sqrt{l}, l = 1, \dots, m-1$. Initial condition $\rho = VV^{\dagger}$, with

$$V = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \frac{\mathbf{v}}{\|\mathbf{v}\|}.$$
$$\mathbf{v} \sim \sum_{n=0}^{m-1} \frac{|v|^n}{\sqrt{n!}} \mathbf{e}_n,$$

Here we choose $v = \sqrt{m/3}$ so that the last terms in the sum for **v** are small also for moderate *m*.

Yingda Cheng (VT)

VT-ANA Page 24

Numerical results

Figure: Errors at the final time for the two low-rank methods (matrix exponentiation (left) and Taylor series (right)) as a function of the timestep. The dashed lines are orders, one to four.

VT-ANA Page 25

→ ∃ →

Numerical results

Figure: Low-rank computation of revival for m = 150.

Yingda Cheng (VT)

CPTP-Lindblad

VT-ANA Page 26

<ロト <問ト < 目と < 目と

Conclusions and outlook

- We propose a simple framework for constructing low rank CPTP scheme.
- Future work: generalize to time-dependent Hamiltonian and jump operators.
- Future work: tensor network.

A B A A B A

The END! Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで