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Introduction

Mater equation

Master equations are differential equations used to model the
dynamics of systems that can be described as a probabilistic
combination of some states.

When the probabilities of the elementary processes are known, one can write
down a continuity equation for W, from which all other equations can be
derived and which we will call therefore the master equation - Nordsieck,
Lam, Uhlenbeck, 1940

Example: d
dt p = F (p, t) = Ap, where p is a vector denoting the probability

of the state.

Quantum master equation deviates from the classical case because we have
to take into account superpositions of states.1

1Campaioli, Cole, Hapuarchchi, 2023.
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Introduction

Quantum mechanics

Consider a d-dimensional quantum system with Hilbert space H. Let
B := {|ϕ1⟩, |ϕ2⟩, ..., |ϕd⟩} be an orthonormal basis for H, so that
⟨ϕi |ϕj⟩ = δij . Any pure state of the system can be expressed as

|ψ⟩ = c1|ϕ1⟩+ c2|ϕ2⟩+ ...+ cd |ϕd⟩ =
d∑

j=1

cj |ϕj⟩, (1)

where the coefficient cj are such that ⟨ψ|ψ⟩ =
∑d

j=1 |cj |2 = 1.

pi = |ci |2 denotes the probability in state i .

Schrödinger equation

d

dt
|ψ(t)⟩ = − i

ℏ
H|ψ(t)⟩, (2)

where H is the Hamiltonian.
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Introduction

Density matrix

General mixed state can be represented by {|ψj⟩, pj}. We can then by the
density operator (matrix)

ρ =
d∑

j=1

pj |ψj⟩⟨ψj |, (3)

where |ψj⟩⟨ψj | is the outer product of |ψj⟩ with itself.

1 Hermitian: ρ = ρ†. This implies that ρ has only real eigenvalues.

2 Positive2: ρ > 0. That is, ρ eigenvalues pj ∈ [0, 1] are not negative.

3 Trρ = 1, which can also be stated as
∑

j pj = 1, i.e., the sum of its
eigenvalues (probabilities) must add up to 1.

The diagonal entries ρii (real) are called population, the off-diagonal
(complex) entries ρij are called coherence. However, ρii is not sufficient to
describe the state unlike the classical case.

2Or, more specifically, positive semi-definite.
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Introduction

Example:qubit

We can define a basis of it by the orthonormal vectors: {|0⟩, |1⟩}. A pure
state of the system would be any unit vector of H2. It can always be
expressed as a |ψ⟩ = a|0⟩+ b|1⟩ with a, b ∈ C s. t. |a|2 + |b|2 = 1.

A mixed state is therefore represented by a positive unit trace operator.

ρ =

(
ρ00 ρ01
ρ10 ρ11

)
= ρ00|0⟩⟨0|+ ρ01|0⟩⟨1|+ ρ10|1⟩⟨0|+ ρ11|1⟩⟨1|, (4)
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Introduction

von Neumann equation

Closed system can be modeled by Schrödinger equation

d

dt
|ψ(t)⟩ = − i

ℏ
H|ψ(t)⟩,

where H is the Hamiltonian.

If H is time independent, we have

|ψ(t)⟩ = e−iHt |ψ(0)⟩. (5)

As H is a Hermitian operator, the operator U = e−iHt is unitary.

The von-Neumann equation can be derived

ρ̇(t) = − i

ℏ
[H, ρ(t)], (6)

where we have used the commutator [A,B] = AB − BA.
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Introduction

Open quantum system

Figure: From: D. Manzano, A short introduction to the Lindblad master
equation, 2020
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Introduction

The Lindblad master equation

The Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation,
often known as the Lindblad master equation,

ρ̇(t) = − i

ℏ
[H, ρ(t)] +

∑
k

γk

(
Lkρ(t)L

†
k −

1

2

{
L†kLk , ρ(t)

})
, (7)

where {Lk} are the Lindblad/jump/collapse operators representing some
non-unitary processes like relaxation or decoherence that occur at some
rates {γk}. {A,B} = AB + BA.

Example: L↓ =

(
0 1
0 0

)
, non-Hermitian.
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Introduction

CPTP map

B(H) : space of all density matrices in the Hilbert space H. A map
V : B(H) → B(H) is called a completely positive and trace-preserving
map (CPTP-map) if it is

Trace preserving. Tr[VA] = Tr[A], ∀A ∈ B(H).

Completely positive (see next page).
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Introduction

Completely positive

Definition

A map V is positive iff ∀A ∈ B(H) s.t. A ≥ 0 ⇒ VA ≥ 0.

Maps a positive matrix to a positive matrix.

However, this is not enough.

Definition

A map V is completely positive iff ∀n ∈ N, V ⊗ 1n is positive.

Meaning: there exist composite systems, and our density matrix could be
the partial trace of a more complicated state.
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Introduction

Completely positive

Complete positive ⇒ Positive, but not vice versa.
Example: matrix transpose operator is positive, but not complete positive.

Theorem (Choi’s Theorem)

A linear map V : B(H) → B(H) is completely positive iff it can be
expressed as

Vρ =
∑
i

V †
i ρVi (8)

with Vi ∈ B(H).
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Introduction

Choi-Kraus

Theorem (Choi-Kraus’ Theorem)

A linear map V : B(H) → B(H) is completely positive and
trace-preserving iff it can be expressed as

Vρ =
∑
l

V †
l ρVl (9)

with Vl ∈ B(H) fulfilling ∑
l

Vl V
†
l = 1H. (10)

Yingda Cheng (VT) CPTP-Lindblad VT-ANA Page 14



Introduction

A beautiful result

If the solution to
d

dt
ρ = Lρ (11)

induces a CPTP map from ρ(0) to ρ(t), then (11) can be written in the
form of Lindblad master equation.

Markovian CPTP generator ⇐⇒ Lindblad master equation
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Numerical methods

Numerical schemes

We would like to design numerical methods with the following properties

CPTP, i.e. the map from ρn to ρn+1 is CPTP map.

High order accurate.

Low rank. For quantum systems with low entropy or that are weakly
coupled to the environment or for the early stage of the dynamics of
systems initialized in a pure state, ρ can be approximated by low rank
matrix.
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Numerical methods

CPTP scheme

CPTP scheme: trace preserving, and

ρn+1 ≡ Gρn =
∑
l

G †
l ρ

nGl

with Gl to be determined.

TP is relatively easy (can be done by renormalization).

Key is to have a scheme that is in Kraus form.

A negative result: no explicit Runge-Kutta method is CP 3.

3Riesch, Jirasuchek, 2019
Yingda Cheng (VT) CPTP-Lindblad VT-ANA Page 18



Numerical methods

CPTP scheme

Steinbach, Garraway, Knight, 1995 construct a first high order CPTP
scheme using Taylor expansion.

Other techniques include Picard iteration, and stochastic unraveling
Cao, Lu, 2021, Wang, Li, 2024, Ding, Li, Lin, 2024.

We reformulate the equation 4 (for simplicity, we write only one jump
operator)

d

dt
ρ(t) =

(
Jρ(t) + ρ(t)J†

)
+ Lρ(t)L† ≡ LJρ(t) + LLρ(t), (12)

where J = −iHeff , Heff = H + 1
2i L

†L. We treat LJρ(t) implicitly, and
LLρ(t) explicitly.
Note: connection with differential Lyapunov equation.

4Steinbach, Garraway, Knight, 1995
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Numerical methods

Lawson integrator (Integrating factor)

d

dt
q(t) = Jq(t) + q(t)J† ⇐⇒ d

dt
V (t) = JV (t), q = VV † (13)

With V (t +∆t) = U(∆t)V (t), we have q(t +∆t) = U(∆t)q(t)U(∆t)†,
which is on Kraus form.

Therefore, we apply the Lawson integrator and get

ρ
(i) = U(ci∆t)ρ0U(ci∆t)† + ∆t

i−1∑
j=1

aijU((ci − cj )∆t)LLρ
(j)U((ci − cj )∆t)†, i = 1, . . . , s,

ρ1 = U(∆t)ρ0U(∆t)† +
s∑

i=1

bi∆tU((1 − ci )∆t)LLρ
(i)U((1 − ci )∆t)†, (14)

As long as aij , bi are non-negative, this is CP. In practice, the operator
U(∆t) can be taken as explicit/implicit scheme that matches with the
order of accuracy of the lawson/RK method.
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Numerical methods

Low rank method

Idea: we solve for V (t) (the Cholesky factor), and perform low rank
truncation according to error threshold. Chen, Farquhar, Parrish 21,
Donatella, Denis, Le Boite, C. Ciuti, 21, McCaul, Jacobs, Bondar, 21

This is done by rounding.
R = R1R

†
1 + . . .RkR

†
k , with Rj ∈ CN×rj . Suppose W = [R1, . . . ,Rk ],

then R = WW † and the low rank truncation Tϵ,rmax [R] is defined as
the truncated SVD of R according to the rank threshold rmax and
energy cutoff ϵ.
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Numerical methods

Low rank method

Question: will this truncation destroy CP?

No.

Theorem

The truncated SVD operator Tϵ,rmax [A], where A is SPSD, is on Kraus
form, and thus is a CP map.

Proof.

Since A is SPSD, its SVD has the form A = UΛU†, and
Tϵ,rmax [A] = UDΛD†U† where D = diag(1, . . . 1,︸ ︷︷ ︸

r

0 . . . , 0). Therefore,

Tϵ,rmax [A] = UDU†A(UDU†)† is on Kraus form.

In contrast, TDVP on Lindblad will destroy the structure.
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Numerical methods

Numerical results: CP
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Figure: Evolution of the population ρ33. RK4 method (black) , IF-exp (red,
dashed), IF-Taylor 6 (blue) using a timestep of 0.1 femto-seconds.
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Numerical methods

Numerical results: Jaynes-Cumming Model

H = λ(bσ+ + b†σ−), L =
√
κb

Here

b = I2×2 ⊗ b̂, σ+ =

(
0 0
1 0

)
⊗ Im×m, σ− =

(
0 1
0 0

)
⊗ Im×m

and b̂ is the m ×m lowering matrix with elements
b̂l ,l+1 =

√
l , l = 1, . . . ,m − 1. Initial condition ρ = VV †, with

V =

(
0
1

)
⊗ v

∥v∥
.

v ∼
m−1∑
n=0

|v |n√
n!
en,

Here we choose v =
√
m/3 so that the last terms in the sum for v are

small also for moderate m.
Yingda Cheng (VT) CPTP-Lindblad VT-ANA Page 24



Numerical methods

Numerical results
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Figure: Errors at the final time for the two low-rank methods (matrix
exponentiation (left) and Taylor series (right)) as a function of the timestep. The
dashed lines are orders, one to four.
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Numerical methods

Numerical results
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Figure: Low-rank computation of revival for m = 150.
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Numerical methods

Conclusions and outlook

We propose a simple framework for constructing low rank CPTP
scheme.

Future work: generalize to time-dependent Hamiltonian and jump
operators.

Future work: tensor network.
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