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Introduction

Mater equation

@ Master equations are differential equations used to model the
dynamics of systems that can be described as a probabilistic
combination of some states.

When the probabilities of the elementary processes are known, one can write
down a continuity equation for W, from which all other equations can be
derived and which we will call therefore the master equation - Nordsieck,
Lam, Uhlenbeck, 1940

@ Example: %p = F(p,t) = Ap, where p is a vector denoting the probability
of the state.

@ Quantum master equation deviates from the classical case because we have
to take into account superpositions of states.’

! Campaioli, Cole, Hapuarchchi, 2023.
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Introduction

Quantum mechanics

o Consider a d-dimensional quantum system with Hilbert space H. Let
B = {|¢p1),|d2), ..., |¢q)} be an orthonormal basis for H, so that
(¢i|®j) = 0jj. Any pure state of the system can be expressed as

d

V) = algr) + 2lg2) + ... + cal@a) :ch|¢j>7 (1)

j=1

where the coefficient ¢; are such that (y[y)) = Zle > =1.
pi = |ci|? denotes the probability in state i.
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where the coefficient ¢; are such that (y[y)) = Zle > =1.
pi = |ci|? denotes the probability in state i.

@ Schrodinger equation

d i
o) = — 5 HIv (), @)

where H is the Hamiltonian.
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Density matrix

General mixed state can be represented by {|1);), pj}. We can then by the
density operator (matrix)

d
p=Y_ pilNiil, (3)
=1

where |1;)(1);] is the outer product of |);) with itself.
@ Hermitian: p = pf. This implies that p has only real eigenvalues.
@ Positive?: p > 0. That is, p eigenvalues p; € [0,1] are not negative.
© Trp =1, which can also be stated as Zj pj =1, i.e,, the sum of its
eigenvalues (probabilities) must add up to 1.

The diagonal entries p;; (real) are called population, the off-diagonal
(complex) entries pj; are called coherence. However, pj; is not sufficient to

describe the state unlike the classical case.
20r, more specifically, positive semi-definite.
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Example:qubit

We can define a basis of it by the orthonormal vectors: {|0), |1)}. A pure
state of the system would be any unit vector of H;. It can always be
expressed as a |1)) = a|0) + b|1) with a,b€ Cs. t. |a]> + |b]* = 1.

A mixed state is therefore represented by a positive unit trace operator.

p— <Poo P01> = p00|0)0] + po1|0)1| + p10|1)(0] + p11|1)(1], (4)
P10 P11
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Introduction

von Neumann equation
@ Closed system can be modeled by Schrodinger equation

d i
o) = — 5 HIv (o),

where H is the Hamiltonian.

o If H is time independent, we have

[¥(t)) = e "4(0)). ()
As H is a Hermitian operator, the operator U = e~ is unitary.
@ The von-Neumann equation can be derived
_ i
p(t) = —1H, p(t)], (6)

where we have used the commutator [A, B] = AB — BA.
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Introduction

Open quantum system

Total System

System

Environment

FIG. 1. A total system divided into the system of interest, “system” and the
environment.

Figure: From: D. Manzano, A short introduction to the Lindblad master
equation, 2020
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The Lindblad master equation

The Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation,
often known as the Lindblad master equation,

(6 =~ M. (1) +Zw<Lkp( - S{tten}). @

where {Lx} are the Lindblad /jump/collapse operators representing some
non-unitary processes like relaxation or decoherence that occur at some
rates {7 }. {A, B} = AB + BA.

Example: [} = (8 é) , hon-Hermitian.
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CPTP map

B(H) : space of all density matrices in the Hilbert space H. A map
V: B(H) — B(H) is called a completely positive and trace-preserving
map (CPTP-map) if it is

o Trace preserving. Tr[VA] = Tr[A], VA € B(H).

e Completely positive (see next page).
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Introduction

Completely positive

Definition

A map V is positive iff YA € B(H) st. A>0=VA>0.

Maps a positive matrix to a positive matrix.
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Introduction

Completely positive

Definition
A map V is positive iff YA € B(H) st. A>0=VA>0. J

Maps a positive matrix to a positive matrix. However, this is not enough.

Definition
A map V is completely positive iff Vn € N, V ® 1,, is positive. J

Meaning: there exist composite systems, and our density matrix could be
the partial trace of a more complicated state.
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Completely positive

Complete positive = Positive, but not vice versa.
Example: matrix transpose operator is positive, but not complete positive.

Theorem (Choi's Theorem)

A linear map V : B(H) — B(H) is completely positive iff it can be
expressed as

V=3 Vipy (8)
i
with V; € B(H).
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Introduction

Choi-Kraus

Theorem (Choi-Kraus’ Theorem)

A linear map V : B(H) — B(H) is completely positive and
trace-preserving iff it can be expressed as

Vp=>"V/pV, (9)
/

with V; € B(H) fulfilling

SV Vv =1y (10)
i
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A beautiful result

If the solution to 4
—“o=r 11
P =Lr (11)

induces a CPTP map from p(0) to p(t), then (11) can be written in the
form of Lindblad master equation.

Markovian CPTP generator <=> Lindblad master equation
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Numerical methods

Numerical schemes

We would like to design numerical methods with the following properties
e CPTP, i.e. the map from p" to p"*1 is CPTP map.
@ High order accurate.

@ Low rank. For quantum systems with low entropy or that are weakly
coupled to the environment or for the early stage of the dynamics of
systems initialized in a pure state, p can be approximated by low rank
matrix.
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CPTP scheme

CPTP scheme: trace preserving, and
pn—l-l = gpn _ Z GlTpnGl
I

with G; to be determined.
e TP is relatively easy (can be done by renormalization).
@ Key is to have a scheme that is in Kraus form.

@ A negative result: no explicit Runge-Kutta method is CP 3.

3Riesch, Jirasuchek, 2019
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CPTP scheme

@ Steinbach, Garraway, Knight, 1995 construct a first high order CPTP
scheme using Taylor expansion.

@ Other techniques include Picard iteration, and stochastic unraveling
Cao, Lu, 2021, Wang, Li, 2024, Ding, Li, Lin, 2024.

e We reformulate the equation # (for simplicity, we write only one jump
operator)

S oe) = (Jn(0) + o)1) + Lo()LT = Lyp(0) + Lup(),  (12)

where J = —iHg, Hog = H + %LTL. We treat L p(t) implicitly, and
L p(t) explicitly.
Note: connection with differential Lyapunov equation.

“Steinbach, Garraway, Knight, 1995
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Numerical methods

Lawson integrator (Integrating factor)

d
_ = = T
79 5 V() =V(t)g=w (13)

With V(t + At) = U(At)V(t), we have g(t + At) = U(At)q(t)U(AL)T,
which is on Kraus form.

(£) = Ja(t) + q(t) ) =

Therefore, we apply the Lawson integrator and get

i—1
P = UGt poU(Gan)T + At S a;U((e — g)anc pWu(q — gant, i=1,..., s,
j=1
o1 = U(At)poU(at) + i biAtU((1 — )AL p U1 — ¢)an T, (14)
i=1
As long as ajj, b; are non-negative, this is CP. In practice, the operator
U(At) can be taken as explicit/implicit scheme that matches with the
order of accuracy of the lawson/RK method.
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Numerical methods

Low rank method

@ Idea: we solve for V/(t) (the Cholesky factor), and perform low rank
truncation according to error threshold. Chen, Farquhar, Parrish 21,
Donatella, Denis, Le Boite, C. Ciuti, 21, McCaul, Jacobs, Bondar, 21

o This is done by rounding.

R = RiR] + ... R¢R[, with R; € CN*7i. Suppose W = [Ry, ..., Ri],
then R = WW!1" and the low rank truncation 7, ... [R] is defined as
the truncated SVD of R according to the rank threshold ry.x and
energy cutoff e.
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Numerical methods

Low rank method

Question: will this truncation destroy CP?
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Numerical methods

Low rank method

Question: will this truncation destroy CP? No.

Theorem

The truncated SVD operator T .. [A]l, where A is SPSD, is on Kraus
form, and thus is a CP map.

Proof.

Since Ais SPSD, its SVD has the form A = UAU', and
[A] = UDADTUT where D = diag(1,...1,0...,0). Therefore,
~——

5 sFmax

[A] = UDUTA(UDUM) is on Kraus form. O

r max

In contrast, TDVP on Lindblad will destroy the structure.
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Numerical methods

Numerical results: CP

P33 population
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Figure: Evolution of the population p33. RK4 method (black) , IF-exp (red,

dashed), IF-Taylor 6 (blue) using a timestep of 0.1 femto-seconds.
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Numerical methods

Numerical results: Jaynes-Cumming Model

H=Xbot +blo7),L=+/kb

~ 0 0 01
_ + _ - _
b=hyw®b, o = (1 0> ® lmxm, 0 = (0 0> ® Imxm

and bisthe mx m lowering matrix with elements
b1 = VI,1=1,...,m—1. Initial condition p = VVT, with

0 v
V = ® )
<1> I

Here

Vv~ —F—¢€n,
n:O\/m

Here we choose v = y/m/3 so that the last terms in the sum for v are
small also for moderate m.
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Numerical methods

Numerical results

Error in excited state at final time IF-LR Error in excited state at final time IF-LR-T
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Figure: Errors at the final time for the two low-rank methods (matrix
exponentiation (left) and Taylor series (right)) as a function of the timestep. The
dashed lines are orders, one to four.
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Numerical methods

Numerical results

Population in the qubit excited state

Errors in the qubit excited state

Population in the qubit excited state o _Rank of density matrix for different ¢
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Figure: Low-rank computation of revival for m = 150.
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Numerical methods

Conclusions and outlook

@ We propose a simple framework for constructing low rank CPTP
scheme.

o Future work: generalize to time-dependent Hamiltonian and jump
operators.

@ Future work: tensor network.

Yingda Cheng (VT) CPTP-Lindblad VT-ANA Page 27



The END! Thank You!
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