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Introduction

Kinetic equations

Time

Continuum Theory
(Navier-Stokes)

Kinetic Theory
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(Schrödinger)

1s

10−6 s

10−10s

10−15s

1A° 1nm 1µm 1m Space

Figure: Left: Figure from E & Engquist, AMS Notice, 2003, Right: tokamak device

Kinetic models are widely used in many applications: plasma, astrophysics,
rarefied gas dynamics, etc.
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Introduction

Boltzmann transport equation: an example

Gas Dynamics:
Position x, velocity v, time t, external force F x

v

m

Equations of motion

{
dx
dt = v
dv
dt = F

m

The Boltzmann equation considers the Probability Density Function
(pdf) f (t, x, v)

Df

Dt
=
∂f

∂t
+ v · ∇xf +

F

m
· ∇vf = Q(f , f ) Collision

Q(f)=0 collisionless case: Vlasov equation
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Introduction

Kinetic simulations

Two classes of methods: deterministic and probablistic.

Probablistic methods: trace the particles, and have statistical noise.

Deterministic methods: directly solve the PDEs, no noise.

Computational challenges: high dimensions (3D+3V), conservation
properties, multiple scales.

100 grid cell in each dimension, means 1012 points.
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Introduction

Overview

We developed several approaches for “reduced order modeling” of kinetic
simulations. This means we want to manage the computational cost for
such high dimensional system.

Sparse grid discontinuous Galerkin (DG) method. Provide accurate
and adaptive simulations for high dimensional PDEs.
Wang et al JCP, 2016, Guo, Cheng, SISC, 2016, 2017, Tao et al JCP, SISC, 2019, Liu et

al, JCP 2019, Tao et al, JCP, 2020, Huang et al, SISC 2020...
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Introduction

Overview

By building surrogate models,

Reduced basis method (RBM). We build reduced order models
computationally using the RBM approach.
Peng, Chen, Cheng, Li, 2021.

Machine learning based moment closure methods. Based on the
moment methods, we use a data-driven approach to develop effective
closure models.
Huang, Cheng, Christlieb, Roberts, 2021.

Of course, this is a very active field, and there are many related important
work in the literature!
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Sparse grid DG method

Motivation

Sparse grid. A technique for breaking the curse of dimensionality.
Smolyak (63), Zenger (91), Griebel (91,98,05...)

DG method. Reed and Hill (73), Cockburn and Shu (89, 90,...).

Figure: From Garcke, SG in a nutshell
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Sparse grid DG method

The ideas

Consider Ω = [0, 1] and define n-th level grid

Ωn = {I jn = (2−nj , 2−n(j + 1)], j = 0, . . . , 2n − 1}
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Sparse grid DG method

Hierarchical decomposition of
piecewise polynomial spaces in one dimension

Conventional approximation space on the n-th level grid Ωn

V k
n = {v : v ∈ Pk(I jn), ∀ j = 0, . . . , 2n − 1}

dim(V k
n ) = 2n(k + 1)

Nested structure
V k

0 ⊂ V k
1 ⊂ V k

2 ⊂ V k
3 ⊂ · · ·

W k
n : orthogonal complement of V k

n−1 in V k
n , for n > 1, represents the finer level details

when the mesh is refined, satisfying

V k
n−1 ⊕W k

n = V k
n

W k
n ⊥ V k

n−1

Let W k
0 := V k

0 , then

V k
N =

⊕
0≤n≤N

W k
n

dim(W k
n ) =

⌈
2n−1

⌉
(k + 1)
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Sparse grid DG method

Hierarchical orthonormal bases: Alpert’s multiwavelet

Bases in W k
0 : scaled orthonormal Legendre polynomials.

Bases in W k
1 :

hi (x) = 21/2fi (2x − 1), i = 1, . . . , k + 1

The orthonormal, vanishing-moment functions {fi (x)}k (Alpert 93), which are supported
on (−1, 1) and depend on k, will be defined later.

Bases in W k
n , n ≥ 1

v j
i,n(x) = 2(n−1)/2 hi (2n−1x − j), i = 1, . . . , k + 1, j = 0, . . . , 2n−1 − 1

Orthonormality of multiwavelet bases across different hierarchical levels∫ 1

0

v j
i,n(x)v j′

i′,n′(x) dx = δii′δnn′δjj′
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Sparse grid DG method

Bases on different levels for k = 0
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Sparse grid DG method

Bases on different levels for k = 1
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Sparse grid DG method

Approximation space in multi-dimensions

Consider 2D case, x = (x1, x2) ∈ Ω = [0, 1]2 and multi-index l = (l1, l2) ∈ N2
0

The standard rectangular grid Ωl with mesh size

hl := (2−l1 , 2−l2 )

h := min{2−l1 , 2−l2}

For each I j
l = {(x1, x2) : xi ∈ (2−li ji , 2

−li (ji + 1)]}, the traditional tensor-product polynomial space
is

Vk
l = {v : v(x) ∈ Pk(I j

l ), 0 ≤ j ≤ 2l − 1}

Pk denotes polynomial of degree at most k in each dimension.

Uniform grid: l1 = l2 = N,
Vk

l = Vk
N , then

Vk
N := V k

N,x1
× V k

N,x2
=

⊕
|l|∞≤N

Wk
l

where
Wk

l := W k
l1,x1
×W k

l2,x2

The basis functions for Wk
l can be defined by a tensor product

v j
i,l(x) :=

2∏
t=1

v jt
it ,lt

(xt), jt = 0, . . . ,max(0, 2lt−1 − 1), it = 1, . . . , k + 1
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Sparse grid DG method

Full grid approximation space

Full grid space:

Vk
N =

⊕
|l|∞≤N

Wk
l

d = 2, N = 2, k = 0

1 1

-1

1
1-
1

1 1

-1

1

1 -1

-1 1

2 2

22

2

2 2

-2 -2

-2-2

-2

-2 -2

-22

-1

W00 W20W10

W01
W11

W02
W12

W21

W22
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Sparse grid DG method

Sparse grid approximation space

We consider the sparse grid space: V̂k
N :=

⊕
|l|1≤N Wk

l

1 1

-1

1
1-
1

1 1

-1

1

1 -1

-1 1

-1

W00 W20W10

W01
W11

W02

A viewpoint without using multiwavelet space: V̂k
N =

⊕
|l|1≤N Vk

l .

dim(V̂k
N) = O(2NNd−1(k + 1)d) or O(h−1| log2 h|

d−1)
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Sparse grid DG method

DG method on sparse grids: linear transport problems

Consider the linear transport equation with variable coefficient{
ut +∇ · (α(x, t) u) = 0, x ∈ Ω = [0, 1]d ,

u(0, x) = u0(x),
(1)

The semi-discrete DG formulation for (1) is defined as follows: find uh ∈ V̂k
N , such that∫

Ω

(uh)t vh dx =

∫
Ω

uhα · ∇vh dx−
∑
e∈Γ

∫
e

α̂uh · [vh] ds, (2)

.
=A(uh, vh)

for ∀ vh ∈ V̂k
N , where α̂uh defined on the element interface denotes a monotone

numerical flux.
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Sparse grid DG method

Stability (constant coefficient case)

Theorem (L2 stability)

The DG scheme (2) for (1) is L2 stable when α is a constant vector, i.e.

d

dt

∫
Ω

(uh)2 dx = −
∑
e∈Γ

∫
e

|α · n|
2
|[uh]|2ds ≤ 0. (3)
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Sparse grid DG method

Error estimate (constant coefficient case)

Similar to Schwab, Suli, Todor (08), we can establish error estimate in L2 norm for the L2

projection operator, combining with an estimate for DG method, we get

Theorem (L2 error estimate)

Let u be the exact solution, and uh be the numerical solution to the semi-discrete scheme (2)
with numerical initial condition uh(0) = Pu0. For k ≥ 1, u0 ∈ Hp+1(Ω), 1 ≤ q ≤ min{p, k},
N ≥ 1, d ≥ 2, we have for all t ≥ 0,

‖uh − u‖L2(ΩN) ≤(
2
√

Cd ||α||2t C?(k, q, d ,N) + (¯̄ck,0,q + B0(k , q, d)κ0(k , q,N)d)2−N/2
)

2−N(q+1/2)|u0|Hq+1(Ω),

where Cd is a generic constant with dependence only on d,
C?(k, q, d ,N) = maxs=0,1

(
¯̄ck,s,q + Bs(k , q, d)κs(k , q,N)d

)
. The constants

¯̄ck,s,q, Bs(k , q, d), κs(k, q,N) are defined in L2 projection error estimates.

Convergence rate O((log h)dhk+1/2).
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Sparse grid DG method

Linear advection: sparse grid DG

We consider the following linear advection problem
ut +

d∑
m=1

uxm = 0, x ∈ [0, 1]d ,

u(0, x) = sin

(
2π

d∑
m=1

xm

)
,

(4)

subject to periodic boundary conditions.
In the simulation, we compute the numerical solutions up to two periods in
time, meaning that we let final time T = 1 for d = 2, T = 2/3 for d = 3,
and T = 0.5 for d = 4.
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Table: L2 errors and orders of accuracy at T = 1 when d = 2, T = 2/3 when d = 3, and T = 0.5 when
d = 4. N is the number of mesh levels, hN is the size of the smallest mesh in each direction, k is the
polynomial order, d is the dimension. DOF denotes the degrees of freedom of the sparse approximation
space V̂ k

N . L2 order is calculated with respect to hN .

N hN DOF L2 error order DOF L2 error order DOF L2 error order

k = 1, d = 2 k = 1, d = 3 k = 1, d = 4

4 1/16 192 9.17E-02 – 832 3.72E-01 – 3072 4.99E-01 –
5 1/32 448 1.90E-02 2.27 2176 1.19E-01 1.64 8832 2.40E-01 1.06
6 1/64 1024 4.81E-03 1.98 5504 2.96E-02 2.01 24320 9.84E-02 1.28
7 1/128 2304 1.27E-03 1.92 13568 8.85E-03 1.74 64768 3.21E-02 1.62

k = 2, d = 2 k = 2, d = 3 k = 2, d = 4

4 1/16 432 2.13E-03 – 2808 1.10E-02 – 15552 2.80E-02 –
5 1/32 1008 4.39E-04 2.28 7344 1.79E-03 2.63 44712 5.82E-03 2.27
6 1/64 2304 4.45E-05 3.30 18576 3.97E-04 2.17 123120 1.37E-03 2.09
7 1/128 5184 7.68E-06 2.54 45792 5.14E-05 2.95 327888 2.58E-04 2.41

k = 3, d = 2 k = 3, d = 3 k = 3, d = 4

3 1/8 320 6.36E-04 – 2432 2.10E-03 – 16128 4.09E-03 –
4 1/16 768 8.93E-05 2.83 6656 2.37E-04 3.14 49152 6.06E-04 2.75
5 1/32 1792 4.07E-06 4.46 17408 2.49E-05 3.25 141312 6.85E-05 3.14
6 1/64 4096 3.47E-07 3.55 44032 1.83E-06 3.76 389120 7.19E-06 3.25
7 1/128 9216 1.97E-08 4.14 108544 2.03E-07 3.18 1036288 6.36E-07 3.50



Sparse grid DG method

Numerical examples: Kinetic equations

Vlasov-Poisson/Vlasov-Maxwell up to 4D. Example: Landau damping
t = 10
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Sparse grid DG method

Streaming Weibel instability

We consider 1D2V problem

ft + ξ2fx2 + (E1 + ξ2B3)fξ1 + (E2 − ξ1B3)fξ2 = 0 , (5)

∂B3

∂t
=
∂E1

∂x2
,

∂E1

∂t
=
∂B3

∂x2
− j1,

∂E2

∂t
= −j2 , (6)

The initial conditions are given by

f (x2, ξ1, ξ2, 0) =
1

πβ
e−ξ

2
2/β[δe−(ξ1−v0,1)2/β + (1− δ)e−(ξ1+v0,2)2/β], (7)

E1(x2, ξ1, ξ2, 0) = E2(x2, ξ1, ξ2, 0) = 0, B3(x2, ξ1, ξ2, 0) = b sin(k0x2) , (8)

where b = 0 is an equilibrium state composed of counter-streaming beams
propagating perpendicular to the direction of inhomogeneity, β1/2 is the thermal
velocity and δ is a parameter measuring the symmetry of the electron beams.
β = 0.01, b = 0.001 Here, Ωx = [0, Ly ], where Ly = 2π/k0, and we set
Ωξ = [−1.2, 1.2]2. We consider the symmetric case

choice 1 : δ = 0.5, v0,1 = v0,2 = 0.3, k0 = 0.2

(9)
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Sparse grid DG method

Percent of active elements by ASG

(c) t = 0. Active elements: 0.73% (d) t = 55. Active elements: 4.36%
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Sparse grid DG method

Percent of active elements by ASG

(e) t = 82. Active elements: 26.55% (f) t = 100. Active elements: 52.41%
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Reduced basis method
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Reduced basis method

RBM

Reduced basis method (RBM): widely used in multi-query tasks, e.g.
parametric PDEs. It employs a greedy algorithm that, via a rigorous error
analysis, identifies the solution basis one-by-one.

Yingda Cheng (MSU) Computational Kinetic Ume̊a 2022 Page 28



Reduced basis method

Motivation

Kinetic equation has inherently low rank structure.
I Analytic model reduction. The classical fluid dynamics equations can

be derived from Boltzmanns equations by ChapmanEnskog expansion.
Grad’s moment methods, and later many other work in this direction.

I However, asumptions/ansatz are necessary for analytic type methods.
I Recently, many computational based model reduction techniques are

used, e.g. POD, tensor based methods.

This work: develops a RBM that treats the velocity variable as the
parameter, and can obtain intrinsic low rank structure when available.
The outcome of the computation is a reduced order model to the
kinetic simulations.
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Reduced basis method

Model problem

A fundamental model in nuclear engineering, astrophysics, medical
imaging: the radiative transfer equation (RTE)

Ω · ∇f = σs〈f 〉 − σt f + G , ∀ x ∈ X, Ω ∈ Sd−1 (10)

where

〈f 〉 =
1

|Sd−1|

∫
Sd−1

fdΩ. (11)

Upon rescaling: σs
ε and εσa. When ε→ 0, f (x,Ω)→ ρ(x), and ρ(x)

solves the diffusion equation

∇ · (D∇ρ) = σaρ. (12)
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Reduced basis method

Review: RBM, from Hesthaven, Rozza, Stamm
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Reduced basis method

Full order solver (FOM)

Consider 1D, 2D simplified version

v∂x f =
σs
2

∫ 1

−1
fdv − σt f + G , v ∈ [−1, 1], x ∈ X,

cos(θ)∂x f + sin(θ)∂y f = σs〈f 〉 − σt f + G , θ ∈ [0, 2π], x ∈ X.

Take upwind DG in space, SN method in velocity, with synthetic
accelerated source iteration.

Yingda Cheng (MSU) Computational Kinetic Ume̊a 2022 Page 32



Reduced basis method

Reduced order solver (ROM)

Note that the velocity directions are coupled through the scattering
term.

We decouple the solutions for different angular samples by designing
an iterative procedure where an approximation of the macroscopic
density ρ is constructed from the RB snapshots and gradually refined
as the RB space is built and RB solutions get more accurate.

We use a least-squares density reconstruction strategy capable of
integrating over an arbitrary set of selected angular samples.

An L1 residual-free error indicator is used for simplicity.

The enrichment is done in a symmetric way.
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Reduced basis method

Offline stage
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Reduced basis method

Online stage

During the online stage, we assume

fΩ ≈ URBcRB(Ω), (13)

and compute cRB(Ω) by solving

(URB)TUΩi
URBcRB(Ω) + (URB)TΣtURBcRB(Ω)

= (URB)TΣsρRB + (URB)Tg.

This is the reduced order computational model we build using the RBM
procedure.
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Reduced basis method

Numerical result - 1D slab geometry
N0 = 2. The training set consists of 24 Gauss-Legendre points.
Example 1 (scattering dominant):

X = [0, 10], G = 0.01, σt = 100, σs = 100, f (0, v) = 0 with v > 0, f (10, v) = 0 with v ≤ 0.

Example 2 (spatially varying scattering coefficient):

X = [0, 10], G = 0.01, σt = 100(1 + x), σs = 100(1 + x),

f (0, v) = 0 with v > 0, f (10, v) = 0 with v ≤ 0.

Example 3 (two-material problem 1):

X = [0, 20], G =

{
5, 0 < x < 10,

0, 10 < x < 20,
σt = 100, σs =

{
90, 0 < x < 10,

100, 10 < x < 20,

f (0, v) = 0 with v > 0, f (20, v) = 0 with v ≤ 0.

Example 4 (two-material problem 2):

X = [0, 11], G = 0, σt =

{
100, 1 < x < 11,

2, 0 < x < 1,
σs =

{
100, 1 < x < 11,

0, 0 < x < 1,

f (0, v) = 5 with v > 0, f (11, v) = 0 with v ≤ 0.

Example 5 (transport dominant):

X = [0, 10], G = 0.01, σt = 1.2, σs = 1, f (0, v) = 0 with v > 0, f (10, v) = 0 with v ≤ 0.
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Reduced basis method

Numerical result - 1D slab geometry

RB dimension Ef Rf Eρ Rρ
Example 1 4 8.04e-3 9.26e-3% 8.00e-3 9.21e-3%

Example 2 4 8.51e-3 2.05e-3% 8.49e-3 2.04e-3%

Example 3 4 9.35e-4 5.13e-2% 8.25e-4 4.53e-2%

Example 4 8 9.99e-2 1.28e+1% 2.59e-3 2.54e-1%

Example 5 10 7.50e-2 5.39e-1% 4.37e-3 3.21e-2%

Table: Testing error for f and training error for ρ with rtol = 10−4, 1D slab
geometry.
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Reduced basis method

Numerical result - 1D slab geometry

(g) Error history of f (h) History of spectral ratio
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Reduced basis method

Numerical result - 1D slab geometry

(i) Dimension of reduced space for
rtol = 10−8

(j) Relative testing error of f
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Reduced basis method

Numerical result

Example #1 is the classical checkerboard problem where σs = 1 and
σa = 1 in the white region while σs = 100 and σa = 0 in the black region.
Examples #2, 3, 4 have σs = 100, 10, and 1, modeling the scattering,
intermediate, and transport regimes, respectively, without the absorption
effect.
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Reduced basis method

Numerical result

Examples 1 and 2, obtained by 8 and 4 bases. Left: FOM, Right: ROM.
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Machine learning moment closure method
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Machine learning moment closure method

Machine learning moment closure

ML has found use in many areas of scientific computing. In particular,
ML has been used in the following works to assist moment closure for
kinetic equations. Han, Ma, Ma and E (2019), Bois, Franck, Navoret
and Vigon (2020), Ma, Zhu, Xu and Wang (2020), Wang, Xu, Zhu,
Ma and Lei (2020), Maulik, Garland, Burby, Tang and Balaprakas
(2020), Porteous, Laiu and Hauck (2021), Schotthöfer, Xiao, Frank
and Hauck (2021)

We begin by considering time dependent RTE f = f (x , v , t), x ∈ R
and v ∈ [−1, 1]

∂t f + v∂x f = σs

(
1

2

∫ 1

−1
fdv − f

)
− σaf . (14)
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Machine learning moment closure method

Model equation and moment method

Define the k-th order moment by

mk(x , t) =
1

2

∫ 1

−1
f (x , v , t)Pk(v)dv , k ≥ 0.

with Pk(v) the k-th Legendre polynomial.
Moment equations

∂tm0 + ∂xm1 = −σam0,

∂tm1 +
1

3
∂xm0 +

2

3
∂xm2 = −(σs + σa)m1,

· · ·

∂tmN +
N

2N + 1
∂xmN−1 +

N + 1

2N + 1
∂xmN+1 = −(σs + σa)mN .

(15)

Traditional closures: PN closure, MN closure, etc

This work: we use the representability power of neural network to obtain
the closure relations from the training data.

Yingda Cheng (MSU) Computational Kinetic Ume̊a 2022 Page 44



Machine learning moment closure method

ML closure

Question: how to design the NN, so that the reduced model has good
accuracy and stability properties?

We developed gradient-based closure for RTE motivated by free
streaming limit, directly learn ∂xmN+1 instead of mN+1

∂xmN+1 =
N∑

k=0

Nk(m0,m1, . . . ,mN)∂xmk (16)
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ML Closure

We write the closure model into a system of first-order PDEs:

∂tm + A(m)∂xm = S(m) (17)

with m = (m0,m1, · · · ,mN)T .

Hyperbolicity

I definition: The system (17) is hyperbolic if A(m) is real diagonalizable
I Hyperbolicity is crucial for long-time stability of the model!
I difficulty: A(m) depend on neural network, generally NOT real

diagonalizable
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Symmetrizer-based hyperbolic closure

Gradient-based ML moment closure model:

∂tm + A(m)∂xm = S(m) (18)

with m = (m0,m1, · · · ,mN) and

A =



0 1 0 0 . . . 0
1
3 0 2

3 0 . . . 0
0 2

5 0 3
5 . . . 0

...
...

...
. . .

...
...

0 0 . . . N−1
2N−1 0 N

2N−1

a0 a1 . . . aN−2 aN−1 aN


with aj related to neural networks:

aj =


N + 1

2N + 1
Nj , j 6= N − 1

N

2N + 1
+

N + 1

2N + 1
Nj , j = N − 1
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Machine learning moment closure method

Key idea: seek a symmetric positive definite matrix A0 (also called a symmetrizer) such
that A0A is symmetric ⇒ symmetrizable hyperbolic

Theorem (symmetrizable hyperbolic)

Consider matrix A ∈ R(N+1)×(N+1) with N ≥ 3 and ai = 0 for i = 0, 1, · · · ,N − 4. If the
coefficients ai for i = N − 3,N − 2,N − 1,N satisfy the following constraints:

aN−3 > −
(N − 1)(N − 2)

N(2N − 3)
, aN−1 >

g(aN−3, aN−2, aN ;N)

(N − 2)(aN−3(2N − 3)N + (N − 1)(N − 2))2
(19)

where g = g(aN−3, aN−2, aN ;N) is a function given by

g = a3
N−3(N − 1)N2(3− 2N)2 + aN−2(2N − 1)(N − 2)3(aN−2N − aN (N − 1))

+ aN−3(N − 2)2(aN (4N2 − 8N + 3)(aN−2N − aN (N − 1)) + (N − 1)3) + 2a2
N−3(N − 1)2N(2N − 3)(N − 2),

then there exist a SPD matrix A0 = diag(D,B) ∈ R(N+1)×(N+1) such that A0A is symmetric.
Here, D = diag(1, 3, 5, · · · , 2N − 5) ∈ R(N−2)×(N−2) and B ∈ R3×3 is a SPD matrix.

Yingda Cheng (MSU) Computational Kinetic Ume̊a 2022 Page 48



Machine learning moment closure method

NN Training (k = 3)

NN maps (m0,m1, · · · ,mN) onto M = (M1,M2,M3,M4) with

NN =M4, NN−2 =M2,

NN−3 = σ(M3)− (N − 2)(N − 1)(2N + 1)

N(2N − 3)(N + 1)

NN−1 = σ(M1)− N

N + 1
+

h(NN−3,NN−2,NN ;N)

(N − 2)(NN−3(N + 1)(2N − 3)N + (N − 2)(N − 1)(2N + 1))2

Here σ : R→ R is a positive function, i.e., σ(x) > 0 for any x ∈ R.

We use fully connected NN with the number of layers=6 and the
number of nodes=256 with the hyperbolic tangent activation
function.
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Machine learning moment closure method

Training data generation

We numerically solve the RTE to generate training data:

unit interval [0, 1] in the physical domain with periodic boundary conditions

initial conditions, truncated Fourier series:

f0(x , v) = a0 +

kmax∑
k=1

ak sin(2kπx + φk ), (20)

kmax = 10, ak ∼ U(− 1
k
, 1
k

) for k ≥ 1, φk ∼ U[0, 2π], a0 = c +
∑kmax

k=1
1
k

with c ∼ U[0, 1]

σs ∼ U[0.1, 100] and σa ∼ U[0, 10], constants over the domain

take 100 different initial data

space time DG method1: Nx = 512, ∆t = 8∆x , T = 1
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Numerical results

Two-material problem. (Different scattering coef in different parts of the domain) N = 6
at t = 0.5 and t = 1. Gray part: optically thin regime; other part: intermediate regime.
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Figure: m0 at t = 0.5
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Figure: m0 at t = 1

Comparison:

PN closure: stable, but not accurate in optically thin regime

Non-hyperbolic ML closure: accurate for short time, but blow up for long time

Hyperbolic ML closure: stable and accurate for long time
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Machine learning moment closure method

Errors in different regimes

Relative L2 error vs. scattering coefficient σs
I hyperbolic ML closure is stable and more accurate than PN closure
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Figure: error of m0 at t = 0.5

100 101 102

σs

10−3

100

103

106

109

1012

re
la

tiv
e 
L2

 e
rro

r

hyperbolic closure
non-hyperbolic closure
PN closure

Figure: error of m0 at t = 1
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Conclusions and future work

We developed three approaches to speed up kinetic simulations.

Sparse grid DG method. Adaptive and accurate. Cost reduction depends

on the solution profile. In future, we will incorporate well known techniques

(mm decomposition) to treat the collisional case. Software package

https://github.com/JuntaoHuang/adaptive-multiresolution-DG

Reduced basis method. Effective reduction in diffusive/fluid regime.
This approach computes a reduced order model for the kinetic
equation. In future, we will generalize this to other kinetic models,
e.g. time dependent, BGK.

ML moment closure methods. Using a data-driven approach, ML
offers an interesting approach for providing reduced order models for
wide regimes. We are working on extensions to 2D models.
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The END!

Thank You!
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