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Motivation

Low-rank compression is one of the big ideas in applied math. 

Figure from tensorflow.org 

Original 576x1024 

Rank 40 approximation 



Motivation
Low-rank matrix/tensor have been widely adopted in data 
science, quantum mechanics …

Figure from https://tensornetwork.org/ 



Low-rank methods to help numerical PDE 

Baseline: 
We store the unknowns of PDE solution as

<latexit sha1_base64="4lIZWR6myXXt2+e1ObyL7ZgISk0="></latexit>

matrix {Xi,j} or tensor {Xi,j,k...}.
If they have low-rank property, we modify traditional  
PDE discretizations to incorporate this compression.



Questions: 
(1) What is low-rank? 

<latexit sha1_base64="9DwAIyv0ZiI28JVcDDCXRAJYg1c="></latexit>

• Suppose the PDE solution on 2D X(x, y) is separable, i.e. it can be ex-

pressed as X(x, y) = f(x)g(y), Then X(x, y) represented by 1D functions

f(x) and g(y).

• Of course, we are not that lucky, but we hope X(x, y) ⇡
Pr

i=1 fi(x)gi(y).
Then we only need 2r 1D functions.

Questions: 
(2) If it holds, how do we compute the low-rank factors directly?

- Separation of variables.

<latexit sha1_base64="FnTruH7m8omGKlKluTjFPO3sUuw=">AAACXXicbVFNTxRBEO0ZQWBEWPXgwUuFxQQSspkhQT0S9aA3SFgg2d0sPb01sx36Y9Jdg64T/qQ3vfhX7Fk2hK+XdPrlVVXq9eu8UtJTmv6J4mdLy89XVteSF+svNzY7r16fels7gX1hlXXnOfeopME+SVJ4XjnkOld4ll9+aetnV+i8tOaEZhWONC+NLKTgFKRxh4Y5ltI0klDLX3idDFsG3wv4gSC4AWF1VRPCdjGWOz9396AM92x3GybSoSA12wOaomnbuUO4uPBWXUlTbkH2FSpngxHte8kQzeR2ybjTTXvpHPCYZAvSZQscjTu/hxMrao2GhOLeD7K0olHDHUmhWtO1x4qLS17iIFDDNfpRM0/nGt4HZQKFdeEYgrl6d6Lh2vuZzkOn5jT1D2ut+FRtUFPxadRI0+ZjxM2iolZAFtqobxMKhAsng1cQU+64oPAhSQghe/jkx+R0v5d96B0c73cPPy/iWGXv2BbbYRn7yA7ZN3bE+kywvxGL1qIk+hcvx+vxxk1rHC1m3rB7iN/+B8M0sys=</latexit>

• If we can compute fi(x), gi(y) directly, then we are “solving” 1D problems.



Low-rank in physical applications

What is low-rank in physical applications? 

* Stochastic/parametric problems. Reduced order models are constructed 
Based on POD. 

* Note: the difference with ROM is here we don’t have the offline phase. 
   Everything is online. 



Low-rank in physical applications

<latexit sha1_base64="pew9KoksIUy5qAIWu2Zjc+hmrA8="></latexit>

• Kinetic problem f(x, v) ⇡ ⇢(x)M(v), e.g. particles in equilibrium. Meso !
Macro.

• Many body problem f(x1, v1, x2, v2) ⇡ f1(x1, v1)f2(x2, v2). Independent
particles.

• ’Smoother’ is better.

• And quantum applications...

What is low-rank in physical applications? 
—-  It’s a measurement of complexity. 



Numerical approaches to obtain low-rank solutions

- Time-independent PDE 
   - Iterative scheme with truncation 
   - Optimization based approaches (ALS) 

 - Greedy, PGD  
- Time-dependent PDE 

- Dynamic low-rank approximation 
- Step and truncate 
- Space time 

See Bachmayr, Low-rank tensor 
methods for partial differential 
equations, Acta Numerica 2023. 

This work belongs to `Iterative scheme with truncation’ 
—- The key is to control intermediate rank and iteration number



This talk will focus on how to obtain low-rank solution of nonlinear PDE 
formulated as nonlinear matrix equation

<latexit sha1_base64="l1Besa9bjr6CgPJyrJ+OvgGP1B4="></latexit>

G(X) = X or F (X) = 0

where X is approximately a low-rank matrix, so 2D case for now



Example: Bratu problem 

<latexit sha1_base64="vM4Kgry4g0EMLX2U1MRRYPtQiUE="></latexit>

FB(i, j;X) =
1

h2
x

(X(i+ 1, j)� 2X(i, j) +X(i� 1, j))

+
1

h2
y

(X(i, j + 1)� 2X(i, j) +X(i, j � 1)) + �eX(i,j) = 0.
(1)

<latexit sha1_base64="ERsj9+QA0UeU934a80C8qtF/kwY=">AAACCHicbVBLSwMxGMzWV62vVY8eDHYFoVB2Cz4uQtGLxwr2Ae26ZLNpG5p9kGSly7JHL/4VLx4U8epP8Oa/MW33oK0DIcPMNyTfuBGjQprmt1ZYWl5ZXSuulzY2t7Z39N29lghjjkkThyzkHRcJwmhAmpJKRjoRJ8h3GWm7o+uJ334gXNAwuJNJRGwfDQLapxhJJTn6oWHETjoeZxV1JUlW6TEV9hAk9/GlaRiOXjar5hRwkVg5KYMcDUf/6nkhjn0SSMyQEF3LjKSdIi4pZiQr9WJBIoRHaEC6igbIJ8JOp4tk8FgpHuyHXJ1Awqn6O5EiX4jEd9Wkj+RQzHsT8T+vG8v+hZ3SIIolCfDsoX7MoAzhpBXoUU6wZIkiCHOq/grxEHGEpequpEqw5ldeJK1a1Tqrnt7WyvWrvI4iOABH4ARY4BzUwQ1ogCbA4BE8g1fwpj1pL9q79jEbLWh5Zh/8gfb5Ay9WmMs=</latexit>

uxx + uyy + �eu = 0

2nd order FD

Goal: design iterative scheme to obtain the low-
rank factors of X, given a desired Tolerance



Bratu problem

200X200 mesh
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Low-rank numerical methods for matrix differential equations

- Linear matrix equations 
   - A well-studied topic in numerical linear algebra,  
see Simonicini, SIAM review, 2016 

- Nonlinear matrix equations 
        - less studied so far 

- Newton + (low-rank)TT-GMRES, Adak et al, 2024, Rogers, 
Venturi, 2024 

- Riemannian optimization, Sutti, Vandereycken, 2024 
- Sparse residual collocation, Naderi, Akhavan, Babaee, 2024 



Anderson Acceleration is a natural and great candidate for low-rank!

- AA is a popular approach for accelerating fixed point
<latexit sha1_base64="Gf17FU/bGuZClOSsIJbKkx3BDk8=">AAAB+3icbVDLSsNAFJ3UV62vWJduBhuhIpSk4GMjFF3osoJtA21aJtNpO3QyCTMTsYT8ihsXirj1R9z5N07bLLT1wIXDOfdy7z1+xKhUtv1t5FZW19Y38puFre2d3T1zv9iUYSwwaeCQhcL1kSSMctJQVDHiRoKgwGek5Y9vpn7rkQhJQ/6gJhHxAjTkdEAxUlrqmUXLcrsJP3XSq9uy2+UnltUzS3bFngEuEycjJZCh3jO/Ov0QxwHhCjMkZduxI+UlSCiKGUkLnViSCOExGpK2phwFRHrJ7PYUHmulDweh0MUVnKm/JxIUSDkJfN0ZIDWSi95U/M9rx2pw6SWUR7EiHM8XDWIGVQinQcA+FQQrNtEEYUH1rRCPkEBY6bgKOgRn8eVl0qxWnPPK2X21VLvO4siDQ3AEysABF6AG7kAdNAAGT+AZvII3IzVejHfjY96aM7KZA/AHxucP4ZGSaA==</latexit>

Xn+1 = G(Xn)

- We will see fixed point iteration is great for low rank! 
(In later slides) 

- Finite window size gives us rank control! (Critical 
point for iterative low-rank methods) 

- And more…

This work is motivated by low-rank GMRES for linear 
problems.



Anderson Acceleration (Anderson, 1965)
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⇤
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Algorithm Unconstrained variant of Anderson acceleration in Rn
.

Input: x0 2 Rn
, memory parameter m̂ � 1.

Output: xk 2 Rn
as an approximate solution to x = g(x).

x1 = g(x0).

for k = 1, 2, . . . until convergence do

m̂k = min(m̂, k).
Set Dk = (�fk�m̂k , . . . ,�fk�1), where �fi = fi+1 � fi and fi = g(xi)� xi.

Solve �(k)
= argminv2Rm̂k kDkv � fkk, �(k)

= (�(k)
0 , . . . , �(k)

m̂k�1)
T .

xk+1 = g(xk)�
Pm̂k�1

i=0 �(k)
i [g(xk�m̂k+i+1)� g(xk�m̂k+i)] .

end for

⇤Submitted to the editors March 4, 2025
Funding: Research supported by DOE O�ce of Advanced Scientific Computing Research under the Advanced Research in

Quantum Computing program, Award Number DE-SC0025424, NSF DMS-2208164, DOE grant DE-SC0023164, and Virginia
Tech.
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‡Department of Mathematics, Virginia Tech, Blacksburg, VA 24061 U.S.A. (yingda@vt.edu).
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See Saad, Acceleration methods for fixed point iterations, Acta 
Numerica 2025. C. T. Kelley, SIAM book, 2022. 



Anderson Acceleration - make it low rank
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Switch all iterates, e.g. Xk, G(Xk) and everything else into their SVD form



All operations are performed on SVD form, e.g.



2 D. APPELÖ AND Y. CHENG

Algorithm lrAA for nonlinear matrix equation G(X) = X.

Input: X0 = U0S0(V0)
T
, memory parameter m̂ � 1, scheduling parameter ✓ 2 (0, 1), tolerance TOL.

Output: Approximate solution Xk to the fixed point problem G(X) = X in its SVD form.

✏G = 10
�2 # Choose ✏G so that G0 has low rank.

X1 = G0 = Cross-DEIM(G(X0), U0, V0, ✏G, rmax).
⇢0 = kX1 �G0k.
for k = 1, 2, . . . do

Gk = Cross-DEIM(G(Xk), Uk, Vk, ✏G, rmax).
⇢k = kGk �Xkk.
m̂k = min(m̂, k).
Solve least square problem to get �k

Xk+1 = Cross-DEIM(Gk �
Pm̂k�1

i=0 �(k)
i [Gk�m̂k+i+1 �Gk�m̂k+i] , Uk, Vk, ✏G, rmax).

Set ✏G = ✓⇢k.
if ⇢k < TOL then

Exit and return Xk+1.

end if

end for

Algorithm Rounding of sum of low rank matrices, i.e. USV T
= T round

✏,rmax
(
Pd

j=1 UjSjV T
j )

Input: low rank matrices in the form UjSjV T
j , j = 1, . . . , s, tolerance ✏, max rank rmax

Output: U, S, V
Let U = [U1, . . . , Us], S = diag(S1, . . . , Ss), V = [V1, . . . , Vs]

Perform column pivoted QR: [Q1, R1,⇧1] = qr(U), [Q2, R2,⇧2] = qr(V )

Compute the truncated SVD for the small matrix with tolerance ✏ and max rank rmax:

T✏,rmax(R1⇧1S⇧T
2 R

T
2 ) = USV T

U  Q1U , V  Q2V

Algorithm Computing the least squares solution minimizing k
Ps

j=1 �jUjSjV T
j � UBSBV T

B k
Input: low rank matrices in the form UjSjV T

j , j = 1, . . . , s, right hand side UBSBV T
B

Output: �j , j = 1, . . . s
Let U = [U1, . . . , Us], V = [V1, . . . , Vs]

Perform column pivoted QR: [Q1, R1,⇧1] = qr(U), [Q2, R2,⇧2] = qr(V )

Set b = vec(QT
1 UBSBV T

B Q2).

Find the least squares � that minimizes the small problem kA� � bk where the kth column of A is

ak = vec(R1⇧
T
1 Dk⇧2RT

2 ), and Dk = diag(0, . . . , 0, Sk, 0, . . . , 0).

For low-rank, we need to truncate! And truncate on 
nonlinear function!
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Rank truncating operations 
With warm start 

Scheduling the truncation 
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G may not be low-rank, but suppose it is, how do we get its SVD, without
accessing all the entries in X

i.e. We would like sublinear algorithms to get truncated 
SVD of G 

<latexit sha1_base64="2gyLbZWccVqmNcbUvMcx0WvV2bg=">AAACVHicbVFNa9tAEF0pSZu6beqmx16GWIUUipECbXIphObgHBOoE4NtzGo1sjde7YrdUVpH+Ec2h0J/SS85ZO2Yko8+WHi8ecPMvE1LJR3F8Z8gXFvfePZ880Xj5avXW2+ab7fPnKmswK4wytheyh0qqbFLkhT2Sou8SBWep9OjRf38Eq2TRn+nWYnDgo+1zKXg5KVRc9qRl6iBg+V6CpGNoOBk5U+IehGYHJy8QogKGJAs0IGOPnmvxh//bJ0IMsz99AxoYk01nnhtVMuL+dfObm9JPrYjaHiMmq24HS8BT0myIi22wsmoeT3IjKgK1CQUd66fxCUNa25JCoXzxqByWHIx5WPse6q5X3FYL0OZwwevZJAb658mWKr3O2peODcrUu/0t0zc49pC/F+tX1F+MKylLitCLe4G5ZUCMrBIGDJpUZCaecKFlX5XEBNuuSD/D4sQkscnPyVne+3kS/vz6V7r8Nsqjk32nu2wXZawfXbIjtkJ6zLBfrG/AQuC4HdwE66FG3fWMFj1vGMPEG7dAqRGrX0=</latexit>

Given a rank r matrix X of size m ⇥ n, a new matrix G defined through
Gij = G(Xij).



176 J. Ballani and D. Kressner

Theorem 5 ([36]) Let A 2 Rm!n. Then there exist row indices r ! f1; : : : ;mg and
column indices c ! f1; : : : ; ng and a matrix S 2 Rk!k such that jcj D jrj D k and

kA " A.W; c/SA.r; W/k2 # .1C 2
p
k.
p
mCpn//!kC1.A/:

Theorem 5 shows that it is, in principle, always possible to build a quasi-optimal
low-rank approximation from the rows and columns of A.

The construction [36] of the low-rank approximation in Theorem 5 proceeds in
two steps:

1. Select c and r by selecting k “good” rows from the singular vector matricesUk 2
Rm!k and Vk 2 Rn!k, respectively.

2. Choose a suitable matrix S.

Step 1 requires to choose c, r with jcj D jrj D k such that kUk.c; W/"1k2
and kVk.r; W/"1k2 are small. This is not practical, primarily because it involves the
singular vectors, which we want to avoid computing. Moreover, it is NP hard to
choose c and r optimally even when the singular vectors are known [23]. Recently, it
was shown [22] that random column and row selections can be expected to result in
good approximations, provided that A admits an approximate low-rank factorization
with factors satisfying an incoherence condition. However, it is hard to know a priori
whether this incoherence condition holds and, in the described scenario of sampling
only a few entries of A, it cannot be enforced in a preprocessing step that randomly
transforms the columns and rows of A.

Step 2 in the construction of [36] involves the full matrix A, which is not available
to us. A simpler alternative is given by S D .A.r; c//"1, provided that A.r; c/ is
invertible. This has a direct consequence: Letting

R WD A " A.W; c/.A.r; c//"1A.r; W/ (18)

denote the remainder of the low-rank approximation, we have

R.r; W/ D 0; R.W; c/ D 0:

In other words, the rows r and the columns c of A are interpolated exactly, giving
rise to the name cross approximation, cf. Fig. 3.

1 3 6

2

4

7

1 3 6
2
4
7

Fig. 3 Low-rank approximation of a matrix by cross approximationFigure from J. Ballani and D. Kressner Matrices 
with Hierarchical Low-Rank Structures  

<latexit sha1_base64="L3oiS0uaUWoZohYKrVPNvO5Ifto="></latexit>

Cross approximation

G ⇡ G(:,J )G(I,J )+G(I, :) = Q1R1G(I,J )+RT
2 Q

T
2 = USV T

How to chose rows I and columns J ?

Thus, only O(nr) information is 
needed 
Comp cost O(nr^2) 

With stabilization



Index selection for cross approximation

- It was shown maxvol index selection is quasi-
optimal 

- We use DEIM (discrete empirical interpolation 
method) based selection 

- DEIM is a well-known method in model reduction, 
and can be used for CUR matrix approximation 

- It is based on singular vectors, and give better 
results than the leverage score based selection.

See Chaturantabut, Sorenson, SISC, 2010, Sorenson, Embree, 
SISC, 2016. 



DEIM index selection

- Goal: To approximate matrix G 
- Given U, V leading left and right singular vectors (size mxr, 

nxr) 
- DEIM(U) -> row index set I, DEIM(V) -> column index set J 
- Error bound exists and we use it to design stopping criteria 
(Donello et al 2023)

Chicken and egg problem: need singular vectors to get index



Fixing the ‘chicken and egg’ problem

- We can do an iteration (similar to maxvol iteration) 
- Start with some index ->Cross -> SVD-> update singular 

vector->update index 
- To have adaptive rank method (rather than fixed rank), we 

merge the old and new index. Prune at the end. 
- We can warm start the iteration

<latexit sha1_base64="Gf17FU/bGuZClOSsIJbKkx3BDk8=">AAAB+3icbVDLSsNAFJ3UV62vWJduBhuhIpSk4GMjFF3osoJtA21aJtNpO3QyCTMTsYT8ihsXirj1R9z5N07bLLT1wIXDOfdy7z1+xKhUtv1t5FZW19Y38puFre2d3T1zv9iUYSwwaeCQhcL1kSSMctJQVDHiRoKgwGek5Y9vpn7rkQhJQ/6gJhHxAjTkdEAxUlrqmUXLcrsJP3XSq9uy2+UnltUzS3bFngEuEycjJZCh3jO/Ov0QxwHhCjMkZduxI+UlSCiKGUkLnViSCOExGpK2phwFRHrJ7PYUHmulDweh0MUVnKm/JxIUSDkJfN0ZIDWSi95U/M9rx2pw6SWUR7EiHM8XDWIGVQinQcA+FQQrNtEEYUH1rRCPkEBY6bgKOgRn8eVl0qxWnPPK2X21VLvO4siDQ3AEysABF6AG7kAdNAAGT+AZvII3IzVejHfjY96aM7KZA/AHxucP4ZGSaA==</latexit>

Xn+1 = G(Xn) Singular vectors from previous 
iterate are close 
Use as Warm Start Donella et al 2023, Dektor 2024 use  

Warm start for time-dependent prob. 



- In general, we can start with random vector U_0, V_0 
- In lrAA, we use U_n, V_n to warm start

Cross-DEIM



Outline: 
• Motivation 
• Low-rank solution to nonlinear matrix differential equations 
• Cross-DEIM 
• Numerical experiments



Cross-DEIM

100X100 Hilbert matrix
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Algorithm 3.2 [I] = QDEIM(U)
QDEIM index selection

1: Input: Orthogonal matrix U of size k ⇥ l
2: Output: Index set I of size l
3: [⇠,⇠, p] = qr(UT , ’vector’) # Perform column pivoted QR on UT .

4: I = P (1 : l)
5: Return I.

Algorithm 3.3 [U,S,V,rC,rR] = scross(G,I,J)
Stabilized cross approximation of G

1: Input: G, and two index sets I, J with k and l elements, respectively.
2: Output: Approximate SVD of G, U 2 Rm⇥r, S 2 Rr⇥r, V 2 Rr⇥n, and two vectors to test for linear

dependence rR, rC 2 Rr.
3: C = G(:,J ) 2 Rm⇥k, R = G(I, :) 2 Rl⇥n

4: CPC = QRC, RTPR = ZRR # Perform column pivoted QR.

5: if k  l then
6: Solve Q(I, :)W = R # Solved using \ if Q(I, :) is well conditioned,
7: # else solved by truncated SVD pseudoinverse.

8: W = ÛSV T # Perform truncated SVD.

9: U = QÛ
10: else

11: Solve Z(:,J )W = CT # Solved using \ if Z(:,J ) is well conditioned,

12: # else solved by truncated SVD pseudoinverse.

13: WT = USV̂ T # Perform truncated SVD.

14: V = ZV̂
15: end if

16: Return USV T ⇡ G and rR = diag(PT
RRRPR), rC = diag(PT

CRCPC).

4. Numerical examples. We report the numerical results of Cross-DEIM and lrAA in this section.
All the errors in this section refer to the errors measured in the matrix Frobenius norm. For convenience
and brevity, we do not rescale the norms by the mesh-size, but note that this could be important when
comparing performance of the methods under grid refinement.

4.1. Cross-DEIM examples. In this subsection, we test the performance of the Cross-DEIM algo-
rithms for matrix approximation and parametric matrix approximation. We consider matrices with fast and
slow singular value decay to demonstrate the behavior of the method for various scenarios.

4.1.1. Matrix approximation. In this experiment we consider the approximation of m⇥ n matrices
whose elements are given by

G1(i, j) =
1

i+ j � 1
, G2(i, j) =

✓
|xi + yj |

2

◆5

.

Here xi = �1 + 2 i�1
m�1 and yj = �1 + 2 j�1

n�1 . For G1 we take m = n = 100, for G2 we take m = n = 500.
G1 is the Hilbert matrix which is known to have rapid singular value decays, where G2 is derived from
a C4 function with non-smooth feature along x + y = 0 on uniform grid points. Thus, the matrix G2

has slow singular value decay and poses numerical challenges for cross approximation. In this example, we
benchmark the results with the truncated SVD and the adaptive cross approximation (ACA) with partial
pivoting (Algorithm 4 in [5]) with the same tolerance numbers. In the examples, we set the Cross-DEIM
parameters rmax,@max, maxiter to the maximally allowable values (e↵ectively turning them o↵). Instead,
we vary the tolerance ✏. The initial vectors U0, V0 are set as random vectors of size m ⇥ 1 and n ⇥ 1. To
assess the overall performance of Cross-DEIM based on such random initialization, we take 100 runs, and
report the mean and max ranks and errors.

The results for G1 with tolerance ✏ varying from 10�12 to 10�1 are reported in Figure 1. In the top
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Fig. 2. Results for approximation of G2. In the figures, ‘CD’ denotes Cross-DEIM.

time step is �t = 1/80. Therefore, we are approximating a sequence of 80 matrices parametrized by t.
We define the matrix elements indexed by (i, j) to be associated with a two-dimensional coordinate

✓
xi(t)
yj(t)

◆
=

✓
cos(2⇡t) sin(2⇡t)

� sin(2⇡t) cos(2⇡t)

◆✓
�1 + ihx

�1 + jhy

◆
,

where hx = 2/(m + 1), hy = 2/(n + 1). The time dependent coordinates resembles solid body rotation.
With this convention, we consider the following two matrices

H1(i, j) = e
�
⇣
( xi

0.3 )
2
+(

yj
0.1 )

2
⌘

, H2(i, j) =

✓
|xi + yj |

2

◆5

.

In both cases, we take m = n = 500, and fix the tolerance to be 10�2. For both cases, we expect
the ranks to change according to the tolerance. We set the remaining Cross-DEIM parameters to be their
maximum allowable numbers, e↵ectively inactivating them. We consider both the “cold-” and the “warm-
”start strategies, where the cold-start refers to a random instance of initial vectors U0, V0. For the warm-start,
we use the singular vectors obtained from the previous time step as initial vectors for approximating Xn.

In Figures 3 and 4, we compare the the number of iterations for Cross-DEIM to converge (note that
the label is to the left in the figure) and the max intermediate rank as a function of the time step. For
both functions we see that warm-start strategies work well in bringing down both iteration number of the
intermediate ranks (roughly by half). In particular, warm-start removes the sensitivity of computational
e�ciency on random initial vectors.

4.2. lrAA examples. In this subsection, we test the lrAA method. We start with a linear problem
from the finite di↵erence approximation to the Laplace’s equation to test lrAA without Cross-DEIM. Then we
consider nonlinear problems, in particular the Bratu problem, the fully nonlinear Monge-Ampére equations
and the time-dependent Allen-Cahn equation. For the nonlinear problems, we use lrAA together with
Cross-DEIM.

Cross-DEIM

500X500



Cross-DEIM 
for parametric 
matrix 
approximation



lrAA: Laplace’s equation
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Laplace’s equation
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iteration and the number of iterations are significantly smaller than the full rank implementation of AA.
In Figure 9 we displays the intermediate rank as a function of iteration count for memory parameter

1, 3, 5, 7, 10, 20. The iteration is stopped when ⇢k is below 10�10 or when the number of iterations have
reached 5000. This computation is done with m = n = 63. It is clear from the results that lrAA requires
larger number of iterations when the memory parameter is too small or too large. We have found that a
memory parameter equal to 5 works well and in all the examples below we use this memory parameter unless
explicitly otherwise noted.
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Fig. 7. The two left graphs show the residuals, errors (left) and ranks (right) obtained using scheduling ✏k+1 = 0.5⇢k.
The two right most graphs show the same but with a fixed truncation set at the level of the iteration stopping tolerance,
✏k+1 = 10�10. Here all results are for n = m = 31.
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Fig. 8. The two leftmost graphs show the residuals and errors obtained using scheduling ✏k+1 = 0.5⇢k, for n = m = 31
(left) and 63 (right). The two rightmost graphs show the residuals and errors obtained using a full rank method, for n = m = 31
(left) and 63 (right).

Preconditioning by Exponential Sums. When preconditioning low rank methods the preconditioner
is only allowed to operate on the low rank factors of the solution [23, 3]. In the exponential sum (ES)
preconditioner this is achieved by approximating the inverse as a sum of Kronecker products, [24, 25].

For problems where the Laplacian is the principal part of the PDE an exponential sum preconditioner
can be very e↵ective. If the SVD of the residual is URSRV T

R = G�(Xk)� F then the residual is applied as
follows

M(G�(X
k)� F ) = M(URSRV

T
R ) = �

nESX

k=1

↵k(e
�kDxxUR)SR(e

�kDyyVR)
T .

Here Dxx and Dyy are the one dimensional finite di↵erence matrices for approximating the second derivative
in x and y. The parameters ↵k and �k are chosen so that the preconditioner is a good approximate inverse.
Here we exclusively use the weights from [7] available from the repository https://gitlab.mis.mpg.de/scicomp/
EXP SUM.

In this example we use much finer grids with n = m = 1023 and 4096 . We use a preconditionitioner
based on the parameters from the file Rel1_x_n10.1E10 from the above repository. We set the rate ↵ = 1 in
the Richardson iteration and in this example we don’t use any scheduling. We terminate the iteration when
the residual has been reduced by 10�8. As can be seen in Figure 10 the preconditioning is very e�cient in
reducing the number of iterations and intermediate rank.

4.2.2. Bratu problem. We use lrAA to solve the non-linear Bratu problem

uxx + uyy + �eu = 0, (x, y) 2 [0, 1]⇥ [0, 1],
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iteration and the number of iterations are significantly smaller than the full rank implementation of AA.
In Figure 9 we displays the intermediate rank as a function of iteration count for memory parameter

1, 3, 5, 7, 10, 20. The iteration is stopped when ⇢k is below 10�10 or when the number of iterations have
reached 5000. This computation is done with m = n = 63. It is clear from the results that lrAA requires
larger number of iterations when the memory parameter is too small or too large. We have found that a
memory parameter equal to 5 works well and in all the examples below we use this memory parameter unless
explicitly otherwise noted.
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Preconditioning by Exponential Sums. When preconditioning low rank methods the preconditioner
is only allowed to operate on the low rank factors of the solution [23, 3]. In the exponential sum (ES)
preconditioner this is achieved by approximating the inverse as a sum of Kronecker products, [24, 25].

For problems where the Laplacian is the principal part of the PDE an exponential sum preconditioner
can be very e↵ective. If the SVD of the residual is URSRV T

R = G�(Xk)� F then the residual is applied as
follows

M(G�(X
k)� F ) = M(URSRV

T
R ) = �

nESX

k=1

↵k(e
�kDxxUR)SR(e

�kDyyVR)
T .

Here Dxx and Dyy are the one dimensional finite di↵erence matrices for approximating the second derivative
in x and y. The parameters ↵k and �k are chosen so that the preconditioner is a good approximate inverse.
Here we exclusively use the weights from [7] available from the repository https://gitlab.mis.mpg.de/scicomp/
EXP SUM.

In this example we use much finer grids with n = m = 1023 and 4096 . We use a preconditionitioner
based on the parameters from the file Rel1_x_n10.1E10 from the above repository. We set the rate ↵ = 1 in
the Richardson iteration and in this example we don’t use any scheduling. We terminate the iteration when
the residual has been reduced by 10�8. As can be seen in Figure 10 the preconditioning is very e�cient in
reducing the number of iterations and intermediate rank.

4.2.2. Bratu problem. We use lrAA to solve the non-linear Bratu problem

uxx + uyy + �eu = 0, (x, y) 2 [0, 1]⇥ [0, 1],
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Fig. 16. The number of iterations used in the Anderson iteration and the two CrossDEIM applications as a function of
the timestep.

5. Conclusions. In this paper, we propose lrAA, low-rank Anderson acceleration for computing low-
rank solution to nonlinear matrix equations; and Cross-DEIM, an iterative cross approximation with warm-
start. YC: XX

In future, we plan to generalize the method to low-rank tensor case. We will also explore other versions
of AA [46, 51, 33] for more e�ciency gains. Another aspect to consider is to deploy Cross-DEIM for explicit
low-rank schemes for time-dependent problems.
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where as before X(i, j) = ui,j ⇡ u(xi, yj).
Here we use an equidistant grid with the same number of points in each direction. As in [6] we use the

solution to the linear problem uxx + uyy =
p
2f as initial data. We consider the problem defined by the

forcing

f(x, y) =
1p

x2 + y2
,

leading to the exact solution

u =
2
p
2

3
(x2 + y2)

3
4 .

We compute the solution to this problem using lrAA on meshes with 21, 61, 101 and 221 grid points in
each direction. We stop the iteration when the residual ⇢k is smaller than 10�10 and use a scheduling
✏k+1 = 0.25⇢k, and take the memory parameter to be 5.

n = m lrAA iterations iterations reported in[6]
21 109 1083
61 287 8967
101 443 23849
221 675 107388

Table 1
Iterations needed for the lrAA method for solving the elliptic Monge-Ampère equation for an exact solution u(x, y) =

2
p

2
3 (x2 + y

2)
3
4 .
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Fig. 13. To the left we display a contour plot of the converged solution along with the index selection (black markers) and

the index selection based on the exact solution (red markers). In the middle we display the rank of the solution as a function
of the iteration. The red line indicates the rank of the converged solution and the blue line indicates the rank of the SVD
approximation truncated at the stopping tolerance. To the right we compare the values of the singular values of the converged
solution (black) and the singular values of the exact solution (red) truncated at the stopping tolerance. The results are for 21
gridpoints. Results for other number of gridpoints are very similar.

In Table 1 we compare the number of iterations needed to reach convergence using the Gauss-Seidel
method of [6] (note that [6] uses a stricter tolerance of 10�14). The number of iterations needed for lrAA
are substantially smaller than those reported in [6].

In Figure 13 we display the index selection of the converged solution and the exact solution, the rank of
the solution as a function of the iteration, and a comparison of the singular values of the converged solution
and the singular values of the exact solution. As can be seen the index selection resembles that of the
(optimal) SVD selection. It can also be noted that the scheduling is successful in keeping the rank low and
gradually increasing throughout the iteration.

In Figure 14 we display the cumulative average of the largest intermediate rank for Cross-DEIM when
used for evaluating the fixed point function and for rounding the linear combination of previous G’s. We
also display the number of iterations needed for the two calls to Cross-DEIM. As can be seen the number of
iterations are very modest and the largest intermediate ranks are close to the rank of the converged solution.

[6] Benamou, Jean-David, Brittany D. Froese, and Adam M. Oberman. 
"Two Numerical Methods for the elliptic Monge-Ampère equation." ESAIM: 
Mathematical Modelling and Numerical Analysis 44, no. 4 (2010): 737-758.

Monge-Ampere 

Again the scheduling gives much lower 
number of iterations. 
It is highly beneficial to incorporate local 
truncation error in rounding / truncation

Discretized with “method 1” from [6]
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Fig. 13. On top we display a contour plot of the converged solution (for tolerance 0.01h (left) and 10�10 (right) along with
the index selection (black markers). In the lower left figure we display the rank of the solution as a function of the iteration
(for tolerance 10�10). The red line indicates the rank of the converged solution and the blue line indicates the rank of the SVD
approximation truncated at the stopping tolerance. To the right we compare the values of the singular values of the converged
solution (black) and the singular values of the exact solution (red) truncated at the stopping tolerance 10�10. The results are
for 221 gridpoints. Results for other number of gridpoints are very similar.

In Table 1, we compare the number of iterations needed to reach convergence using the Gauss-Seidel
method of [6] (note that [6] uses a stricter tolerance of 10�14). The number of iterations needed for lrAA
are substantially smaller than those reported in [6]. We can see lrAA iteration number is drastically smaller
particularly for large mesh size. We further note that the number of iterations and final ranks are even
smaller when using a tolerance that scale with the finite di↵erence error.

In Figure 13, we display the index selection of the converged solution, the rank of the solution as a
function of the iteration, and a comparison of the singular values of the converged solution and the singular
values of the exact solution. These results are all for the tolerance set to 10�10. It can also be noted that
the scheduling is successful in keeping the rank low and gradually increasing throughout the iteration.

In Figure 14 we display the cumulative average of the largest intermediate rank for Cross-DEIM when
used for evaluating the fixed point function and for rounding the linear combination of previous G’s. We
also display the number of iterations needed for the two calls to Cross-DEIM. As can be seen the number of
iterations are very modest and the largest intermediate ranks are close to the rank of the converged solution.

4.2.4. The Allen-Cahn equation. Here we use the same example as in [8, 31] and solve the Allen-
Cahn equation

ut = ⌫�u+ u� u3,

with ⌫ = 0.01 and periodic boundary conditions on the square domain (x, y) 2 [0, 2⇡]2. The initial data is
taken to be

u(x, y) =
[e� tan2(x) + e� tan2(y)] sin(x) sin(y)

1 + e|csc(�x/2)| + e|csc(�y/2)| .

As before X(i, j) ⇡ u(xi, yj) and we again approximate the Laplacian with the standard five point stencil.
We use m = n = 256 and solve until time 10 using 100 time steps and the backward Euler method. Here in
lrAA, we take TOL = 10�2, DEAA: in line with the local truncation error of the backward Euler method
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Fig. 12. Bratu problem solved by lrAA. The figure displays the cumulative average of the largest intermediate rank for
Cross-DEIM (axis on the left) and the number of iterations needed for Cross-DEIM (axis on the right). The solid lines
represent the results for the fixed point function and for the dashed lines are for rounding the linear combination of previous
G’s. The left figure is without preconditioning and the right is with.

on (x, y) 2 [0, 1]⇥[0, 1] and with Dirichlet boundary conditions. To discretize this equation we use the scheme
denoted “Method 1” in [6]. The scheme is defined as a fixed point iteration (here we use the traditional
finite di↵erence notation)

(4.3) ui,j = hi,j ⌘
1

2
(a1 + a2)�

1

2

r
(a1 � a2)2 +

1

4
(a3 � a4)2 � h4fi,j ,

where

2a1 = ui+1,j + ui�1,j , 2a2 = ui,j+1 + ui,j+1, 2a3 = ui+1,j+1 + ui�1,j�1, 2a4 = ui+1,j�1 + ui�1,j+1.

To iterate on this discretization we use a Richardson iteration corresponding to the fixed point iteration
function

G(i, j) = X(i, j) + 0.9(H(i, j)�X(i, j)),

where as before X(i, j) = ui,j ⇡ u(xi, yj).
Here we use an equidistant grid with the same number of points in each direction. As in [6] we use the

solution to the linear problem uxx + uyy =
p
2f as initial data. We consider the problem defined by the

forcing

f(x, y) =
1p

x2 + y2
,

leading to the exact solution

u =
2
p
2

3
(x2 + y2)

3
4 .

We compute the solution to this problem using lrAA on meshes with 21, 61, 101 and 221 grid points in
each direction. We use a scheduling ✏k+1 = 0.25⇢k, and take the window size m̂ to be 5. We consider two
tolerances for stopping the iteration, either we take the tolerance to be 10�10 or we take the tolerance to be
on the order of the truncation error as measured in the Frobenius norm and set it to be 0.01h.

n = m lrAA iterations iterations reported in[6] final rank
21 109 (7) 1083 13 (4)
61 287 (8) 8967 18 (7)
101 443 (13) 23849 20 (7)
221 675 (11) 107388 26 (8)

Table 1
Iterations needed and final rank for the lrAA method for solving the elliptic Monge-Ampère equation for an exact solution

u(x, y) = 2
p

2
3 (x2 + y

2)
3
4 . The numbers in parenthesis are obtained with tolerance 0.01h.
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Monge-Ampere: performance of Cross-DEIM

mesh: 61x61, 101x101, 221x221



Allen-Cahn
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Exponential sum preconditioner
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Here we solve Allen-Cahn ut =
1

100�u+ u� u3, X(i, j) ⇡ u(xi, yj).
We use a 1024⇥ 1024 mesh.

<latexit sha1_base64="FWuJhKEw8Dj07lQBmzxo9KcGbsk="></latexit>

u(x, y) =
[e� tan2(x) + e� tan2(y)] sin(x) sin(y)

1 + e|csc(�x/2)| + e|csc(�y/2)| .



Summary: 
• lrAA (low-rank Anderson acceleration):  a new approach 

for computing low-rank solution to nonlinear problem. 
• Cross-DEIM: adaptive iterative cross approximation with 

a warm-start strategy. 
Future work: 
• Generalizing to tensor. 
• Application. 
• Improve and analyze the method.




